

# Village of Lions Bay

# 2024 ANNUAL REPORT ON DRINKING WATER QUALITY

VERSION 1 (SUBMITTED TO VANCOUVER COASTAL HEALTH 21 JUL. 2025)
VERSION 2 (SUBMITTED TO VANCOUVER COASTAL HEALTH 8 SEP. 2025)
VERSION 2.1 (SUBMITTED TO VANCOUVER COASTAL HEALTH 12 SEP. 2025)

## **Table of Contents**

| EXECUTIVE  | SUMMARY                                        | 4  |
|------------|------------------------------------------------|----|
| GLOSSARY   | /ABBREVIATIONS                                 | 5  |
| 1. INTROD  | OUCTION                                        | 6  |
| REGULA     | TION                                           | 6  |
| ECONO      | ИICS                                           | 6  |
| 2. SOURCE  | WATER                                          | 8  |
| 3. TREATN  | ИENT                                           | 9  |
| PLANT P    | ERMITS                                         | 9  |
| PRIMAR     | Y DISINFECTION: ULTRAVIOLET TREATMENT          | 9  |
| UV DO      | OSING                                          | 9  |
| SECOND     | ARY DISINFECTION: CHLORINE TREATMENT           | 10 |
| CONC       | ENTRATION TIME (CT)                            | 11 |
| 4. SAMPLI  | NG                                             | 13 |
| BACTER     | OLOGICAL ANALYSIS                              | 13 |
| POST-      | UV, PRE-CHLORINATION EXCEEDANCES IN NOVEMBER   | 17 |
| TURBIDI    | TY ANALYSIS                                    | 17 |
| DISTRIB    | UTION NETWORK SAMPLING                         | 19 |
| NOTE       | ON CHLORINE DISINFECTION BY-PRODUCTS           | 24 |
| NOTE       | ON CHLORINE DOSING                             | 26 |
| CHLO       | RINE FAQS                                      | 27 |
| METALS     | AND OTHER PARAMETERS                           | 28 |
| NOTE       | ON FLUORIDE                                    | 33 |
| NOTE       | ON CAFFEINE                                    | 33 |
| NOTE       | ON pH                                          | 33 |
| NOTE       | ON ALKALINITY, HARDNESS & WATER STABILITY      | 34 |
| 5. DISTRIB | UTION SYSTEM                                   | 36 |
| STORAG     | E TANKS                                        | 36 |
| WATER      | MAINS                                          | 37 |
| ASBES      | STOS FROM THE DISTRIBUTION MAINS               | 37 |
| PRESSUI    | RE REDUCING STATIONS, OTHER SPECIALISED VALVES | 38 |
| FILTRAT    | ION EXEMPTION                                  | 39 |
| COND       | OITION 1: ADEQUATE DISINFECTION                | 39 |

| CONDITION 2: CLEAN SUPPLY                                  | 40                   |
|------------------------------------------------------------|----------------------|
| CONDITION 3: LOW TURBIDITY                                 | 41                   |
| CONDITION 4: CONTROL FECAL COLIFORM IN THE WATERSHE        | DS42                 |
| 6. OPERATORS                                               | 45                   |
| 7. ABNORMAL OPERATION PROTOCOLS                            | 46                   |
| 8. STRATEGIC ISSUES                                        | 49                   |
| SUPPLY                                                     | 49                   |
| PROBLEMATIC INTAKES                                        | 49                   |
| EXCESSIVE DEMAND                                           | 50                   |
| LEAKAGE                                                    | 50                   |
| METERING                                                   | 51                   |
| OUTDOOR WATER USE                                          | 52                   |
| LIMITED CAPITAL                                            | 52                   |
| 9. WORK PROGRAM                                            | 54                   |
| PLANT LOGS                                                 | 54                   |
| 2024 PROJECTS                                              | 54                   |
| 2024 OPERATING CHANGES                                     | 55                   |
| LOOKING AHEAD                                              | 55                   |
| APPENDIX 1: HEALTH CANADA GUIDELINES FOR DRINKING WATER    | QUALITY (CHEMICAL)57 |
| APPENDIX 2: DISINFECTION BYPRODUCTS ANALYSES               |                      |
| APPENDIX 3: SOURCE WATER TURBIDITY & UVT                   | 68                   |
| APPENDIX 4: TREATED WATER TURBIDITY & CHLORINE RESIDUAL    | 73                   |
| APPENDIX 5A: BIANNUAL METALS & CHEMISTRY, 19 MAR. (ABRIDO  | GED)81               |
| APPENDIX 5B: BIANNUAL METALS & CHEMISTRY, 17 SEP. (ABRIDG  | ED)91                |
| APPENDIX 6: METALS AND CHEMISTRY, ALBERTA CREEK RAW, APF   | DEC101               |
| APPENDIX 7: HIKING SEASON CAFFEINE TESTS                   | 123                  |
| APPENDIX 8: ASBESTOS REPORT OF 25 NOV. 2024 (SAMPLES 19 NO | DV.)125              |
| APPENDIX 9: DAILY AVERAGE TURBIDITY, 15 SEC. METER READING | S127                 |
| APPENDIX 10: CERTIFICATIONS                                | 133                  |

#### **EXECUTIVE SUMMARY**

The Village of Lions Bay is a small British Columbia municipality of 1368 census residents, located on Highway 99 midway between Vancouver and Squamish, on the steep slopes of Howe Sound. Unlike most members of the Metro Vancouver Regional District, which receive drinking water wholly or partly from the Greater Vancouver Water District, Lions Bay is a standalone municipal water utility and produces its own drinking water. Water quality is sampled from the collection, treatment and distribution system throughout the year.

#### In 2024, Lions Bay:

- Met the *Drinking Water Protection Regulation* that no fully treated water sample tested positive for *E. coli*; and "In each 30-day period, over 90 percent of...samples [had] zero Total Coliform, and no sample [had] more than 10 Total Coliform per 100 millilitres." One partially treated sample (post-UV but pre-chlorination on Nov. 4) was positive for *E. coli* after a week of heavy rain, but no samples were positive post-chlorination. See p.17 for details.
- Met all guidelines and recommendations for chemicals, metals and other water quality
  measures, except for lead results from the first draw of two in-building sample points
  over the Canada Guidelines' Maximum Acceptable Concentration (post-flush readings
  were acceptable, but the result demonstrates the need to flush domestic services before
  use. See p.28 for details).
- Continued to meet two of four conditions for continued raw water filtration exemption, and is progressing sufficiently on the remaining two to satisfy VCH; see p.39 for details.
- Assesses its water infrastructure as workable but needing upgrading, especially certain
  watermains for fireflow reasons. Accelerating leakage is an issue, to be addressed in
  2025 and 2026 by implementation of universal property and zone water metering. Dayto-day, tactical and strategic management and planning is in hand.

This detailed report is presented as a record of the year's water. Audiences include Vancouver Coastal Health (the drinking water regulator), Council (the elected representatives of the community), and the public. It should be read in conjunction with the municipality's <u>Source Water Protection Plan</u> available on the municipality's website.

### **GLOSSARY/ABBREVIATIONS**

| cu.m, m <sup>3</sup> | Cubic meter, 1000 litres                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------|
| DWO                  | VCH's Drinking Water Officer                                                                     |
| EOCP                 | The BC Environmental Operators Certification states as its mission "To protect human             |
|                      | health and the environment by investing in Operators and facilities through increased            |
|                      | knowledge, skill, and proficiency in all matters related to the water cycle."                    |
| GPD                  | (US) gallons per day. There are 264 USG/cu.m                                                     |
| ID                   | Inside Diameter (of a pipe; tubes are sized by outside diameter)                                 |
| L                    | Litre or liter, 1/1000 of a cubic meter of liquid                                                |
| mg/L                 | Because the kilogram was originally defined as the mass of one litre of water at 0 °C,           |
|                      | concentrations of water solutions and suspensions stated in traditional volume-per-              |
|                      | volume measures such as parts per million (ppm) are equivalent to more rigorous mass-            |
|                      | per-volume measures such as milligrams per litre (mg/L). For uniformity, concentrations          |
|                      | are stated in this report in mg/L or $\mu$ g/L (micrograms per litre).                           |
| МНО                  | VCH's Medical Health Officer                                                                     |
| MVRD                 | The Metro Vancouver Regional District comprising a treaty First Nation, an Electoral Area        |
|                      | and 21 municipalities including Lions Bay <sup>1</sup> . Known as the Greater Vancouver Regional |
|                      | District until 2015, Metro includes the Greater Vancouver Water District and Greater             |
|                      | Vancouver Sewerage and Drainage District, which Lions Bay does not participate in.               |
| USG                  | US gallon of 3.79 L, as distinct from the imperial gallon of 4.55 L, in common use in            |
|                      | Canada due to most equipment being supplied from the US                                          |
| UVT                  | Ultraviolet transmittance, a measure of the amount of ultraviolet light able to pass             |
|                      | through water, expressed as a percentage                                                         |
| VCH                  | Vancouver Coastal Health, the regional health authority and Lions Bay's water regulator          |

-

<sup>&</sup>lt;sup>1</sup> scəẃaθən məsteyəx<sup>w</sup> (Tsawwassen First Nation), Electoral Area A, Anmore, Belcarra, Bowen Island, Burnaby, Coquitlam, Delta, Langley City, Langley Township, Lions Bay, Maple Ridge, New Westminster, North Vancouver City, North Vancouver District, Pitt Meadows, Port Coquitlam, Port Moody, Richmond, Surrey, Vancouver, West Vancouver, White Rock.

#### 1. INTRODUCTION

#### **REGULATION**

As a standalone municipal water utility under the *Local Government Act*, the *Drinking Water Protection Act* and the *Drinking Water Protection Regulation*, Lions Bay is required to:

- 1. Operate under permits issued by the BC Ministry of Health Services
- 2. Engage in water quality monitoring
- 3. Prepare this annual report on water quality.

Administration and enforcement of the regulations falls to regional Health Authorities. Lions Bay's health authority is Vancouver Coastal Health (VCH), represented by a Drinking Water Officer (DWO) who works with municipal staff on a daily, weekly and monthly basis.

Water quality is sampled from the collection, treatment and distribution system throughout the year according to 1) Health Canada *Guidelines for Drinking Water Quality*; 2) direction from the Drinking Water Officer; and 3) where no Canadian regulations exist, using U.S. Environmental Protection Agency (EPA) guidelines.

#### **ECONOMICS**

With low economies of scale, Lions Bay drinking water is expensive: 2024 water spending was \$1,217,790, 9% over a budget that was approximately 24 percent of the municipality's total operating budget including amortisation and interest. Water cost is largely independent of the amount of water produced:

| ITEM                                   | FIXED COST | VARIABLE COST |
|----------------------------------------|------------|---------------|
| Maintenance and repair:                |            | _             |
| Access roads & intake                  | 86,468     |               |
| Plants                                 | 55,443     |               |
| Watermain/distribution                 | 31,994     |               |
| Amortisation of capital assets         | 219,226    |               |
| Bulk chlorine                          |            | 12,996        |
| Data connectivity, SCADA maintenance   | 28,774     |               |
| Electricity, plants, UV reactors       | 2889       | 13,050        |
| Financing and interest                 | 85,982     |               |
| Insurance                              | 53,908     |               |
| Laboratory                             | 22,122     |               |
| Water license                          | 450        | 450           |
| Staffing:                              |            |               |
| Treatment plants                       | 242,032    |               |
| Intakes                                | 101,343    |               |
| On-call                                | 109,863    |               |
| Payroll costs, certification, training | 81,474     |               |
| Allocated Administrative Dept.         | 68,325     | 1000          |
|                                        | 1,190,293  | 27,496        |
|                                        | 97.7%      | 2.3%          |

Water operating costs are funded by a flat annual utility fee that in 2024 averaged \$2091 over 559 residential and commercial properties:

#### ANNUAL WATER RATE COMPARISONS

| Lions Bay (527 single family, 20 multi-family, 1 institutional, 5 commercial) | \$2091 |
|-------------------------------------------------------------------------------|--------|
| Vancouver (single family)                                                     | \$867  |
| Surrey (single family)                                                        | \$1082 |
| Coquitlam (single family)                                                     | \$699  |
| Belcarra (single family)                                                      | \$1403 |

2024 water capital expenditure was budgeted at \$721,000 for the Alberta Supply-Augmentation Project (delivered under budget after a mid-project reconceptualisation), and \$205,000 for process control system upgrades.

The volume of water produced in 2024 was 497,400 cu.m or 131,400,000 USG, an average of 359,100 USG per day, which was a significant reduction on 2023's 618,600 GPD average. 2024's water demand represents 978 liters per capita per day, approximately double the regional average (see EXCESSIVE DEMAND on p.47 for further discussion). A high 86 percent of the year's production was from the Harvey Plant to utilise available zone flowmeters to track leakage; the Magnesia Plant was cycling the entire period, ready to bring online if needed.

Municipal staff are proud of Lions Bay's water quality and that there have been no Boil Water Advisories in 11 years.

#### 2. SOURCE WATER

See the municipality's <u>Source Water Protection Plan</u> for details on the barriers and measures in place to protect Lions Bay's drinking water from source hazards.

Operationally, when the volume of treated water in a given plant's storage tank drops to a set level, an automated sequence starts to warm up one of two alternating UV reactors, open the inlet from the weirs and screens on Harvey, Alberta or Magnesia creeks, and draw water through the reactors, injecting chlorine before refilling the tank to a set level.

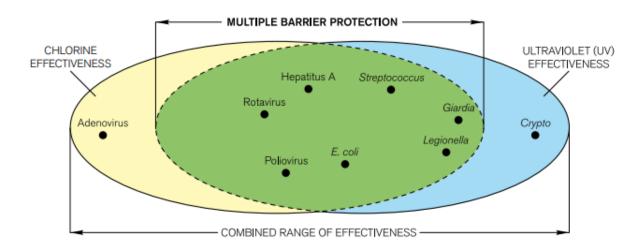
#### 3. TREATMENT

#### **PLANT PERMITS**

|                                       | Magnesia Plant                                          | Harvey Plant        |  |  |  |  |
|---------------------------------------|---------------------------------------------------------|---------------------|--|--|--|--|
| VCH Operating Permit                  | Facility 3317552347                                     | Facility 3317552348 |  |  |  |  |
| Environmental Operators Certification | Class I Water Treatment Facility, certification renewed |                     |  |  |  |  |
| Program (EOCP) classification         | 2023, valid to November 16, 2028                        |                     |  |  |  |  |

#### PRIMARY DISINFECTION: ULTRAVIOLET TREATMENT




Lions Bay does not filter raw water (see FILTRATION EXEMPTION on p.36), but review the <u>Source Water Protection Plan</u> for information on screening that takes place before raw water flows to the Harvey and Magnesia treatment plants.

Both plants operate virtually identically and their first treatment step is ultraviolet (UV) irradiation of the incoming raw water. Reactors automatically adjust lamp power to maintain the UV dose required to achieve a 3-log (thousand-fold, 99.9%) reduction of a wide range of

microorganisms, particularly chlorine-resistant *Giardia* and *Cryptosporidium* protozoa. When dosing cannot be maintained due to incoming raw water parameters such as high turbidity or low ultraviolet transmissivity, the reactor alarms, and the plant process control system halts flow.

#### **UV DOSING**

UV is effective against a wide range of microorganisms:



In 2021 the Harvey Plant's two alternating UV reactors were upgraded from two lamps each to four, to provide sufficient capacity for occasional turbidity spikes at the 700,000+ GPD flowrates being experienced at the time. In 2024, as part of the application for the outstanding VCH Construction Permit (CP) to formalize the upgrade, the reactor manufacturer advised that the original reactor parameters had been set on the basis of five raw water qualification samples that happened to be over 90% ultraviolet transmittance (UVT). Lions Bay raw water UVT often goes below 90% and the reactors were immediately reconfigured to expect 80% UVT. Reactor specifications provide a 3-log (99.9% or one thousand-fold) reduction of *Cryptosporidium* and *Giardia* at raw water ultraviolet transmittance (UVT) values down to 70%:

|                                       |                      | Harvey 2-lamp | Harvey 4-     | Magnesia 2-   |
|---------------------------------------|----------------------|---------------|---------------|---------------|
| UV REACTORS                           |                      | (prior)       | lamp          | lamp          |
| Qualification raw w                   | ater UVT             | 90%           | 80%           | 90%           |
| Min. cryptosporidium inactivation per | chamber              | 3 log (99.9%) | 3 log (99.9%) | 3 log (99.9%) |
|                                       | ML/d                 | 3.25          | 6.52          | 2.79          |
| Max. flow, single chamber             | GPD                  | 858,562       | 1,722,407     | 737,280       |
|                                       | GPM                  | 596           | 1,196         | 512           |
|                                       | ML/d                 | 1.85          | 3.70          | 1.84          |
| Avg. daily flow, single chamber       | GPD                  | 488,719       | 977,437       | 486,077       |
|                                       | GPM                  | 312           | 679           | 338           |
| Target dose per chamber, MS2-RED*     | , mJ/cm <sup>2</sup> | 26.25         | 36.46         | 26.25         |
| Max. cycles/day for warrantee p       | ourposes             | 4             | 4             | 4             |

<sup>\*</sup>Male Specific 2 (bacteriophage)-Reduction Equivalent Dose

Operating procedures were changed in 2024 to reduce cycles per day, and both plants' inlet valves will be upgraded in 2025 to control flowrate rather than simply outlet pressure. The 4-lamp Harvey configuration now provides for 977,000 GPD of throughput, achieving the original capacity goal of the upgrade project, but with now-continual leak fixing and the advent of universal water metering in 2025 and 2026 (see METERING on p.51), this throughput will not be seen again, somewhat negating the need for four lamps. Nonetheless, the dose will be increased to the specified 36.5 mJ/cm² (40 mJ/cm² nominal) once VCH issues the CP. UVT for incoming raw water was always above 70% in 2024 (full data on p.60):

| RAW WATER UVT, 2024 |                                               |            |  |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------|------------|--|--|--|--|--|--|--|--|
|                     | Harvey (no Alberta supply utilised in 2024)/% | Magnesia/% |  |  |  |  |  |  |  |  |
| SAMPLES             | 244                                           | 240        |  |  |  |  |  |  |  |  |
| MIN                 | 73.6                                          | 77.0       |  |  |  |  |  |  |  |  |
| MAX                 | 98.3                                          | 97.9       |  |  |  |  |  |  |  |  |
| MED                 | 92.2                                          | 95.0       |  |  |  |  |  |  |  |  |
| AVG                 | 91.3                                          | 94.3       |  |  |  |  |  |  |  |  |

#### SECONDARY DISINFECTION: CHLORINE TREATMENT

After UV disinfection, water is injected with 12% sodium hypochlorite-water solution at a rate to produce chlorine concentrations above 0.2 mg/L throughout the system "Hypo" is the same substance used to disinfect swimming pools and the active ingredient of laundry bleach. It is used worldwide as a safe, inexpensive and effective barrier against cholera, polio, typhoid, hepatitis, enteric and other

waterborne disease organisms. It works by disrupting organism respiration and reproduction, and as stated above, is particularly effective against simpler lifeforms such as viruses, which UV is not. The presence of chlorine in the distribution network prevents organism regrowth by continuing to disrupt reproduction.

Chlorine level in drinking water is not directly regulated by BC's *Drinking Water Protection Act* or *Drinking Water Protection Regulation*. Instead, Health Canada's *Guidelines for Canadian Drinking Water Quality* (summarised on p.57) indicate that setting a maximum chlorine value "is not necessary due to low toxicity at concentrations [typically] found in drinking water" and state "free chlorine concentrations in most Canadian drinking water distribution systems range from 0.04 to 2.0 mg/L." Health Canada's supplemental *Guideline Technical Document—Chlorine* publication states that:

- The US EPA Surface Water Treatment Rule requires a minimum disinfectant residual of 0.2 mg/L for water entering the distribution system and that a detectable level be maintained throughout the distribution system.
- The World Health Organization (WHO) has suggested that, for areas with little risk of cholera or related outbreaks, a free chlorine residual range of 0.2-0.5 mg/L be maintained at all points in the supply (WHO, 1997 and that in general, a free chlorine residual of 0.2 mg/L is considered a minimum level for the control of bacterial regrowth in the distribution system

American Water Works Association (AWWA) standards and guidelines lay out that for safe drinking water in the distribution system, levels are generally low (0.04-2.0 mg/L free chlorine) to ensure disinfection while maintaining consumer acceptability. These guidelines cover a wide range. In Lions Bay the objective is to maintain 0.20 mg/L of chlorine residual in all parts of the system at all times. In practice the following results were achieved in 2024:

| SUMMARY: 2024 CHLORINE RESIDUALS/mg/L |                      |                         |                        |                               |                              |                        |                          |                                 |  |  |  |  |  |  |
|---------------------------------------|----------------------|-------------------------|------------------------|-------------------------------|------------------------------|------------------------|--------------------------|---------------------------------|--|--|--|--|--|--|
|                                       | Harvey Plant<br>Tank | PRV-3 (Highway<br>Tank) | Café/Store<br>(inside) | Lions Bay Ave<br>(cul-de-sac) | Kelvin Grove<br>(Works Yard) | Magnesia Plant<br>Tank | PRV-5 (north<br>Bayview) | Brunswick Beach<br>(cul-de-sac) |  |  |  |  |  |  |
| SAMPLE COUNT                          | 248                  | 249                     | 248                    | 249                           | 249                          | 243                    | 249                      | 249                             |  |  |  |  |  |  |
| MIN                                   | 0.64                 | 0.35                    | 0.34                   | 0.23                          | 0.19                         | 0.42                   | 0.64                     | 0.20                            |  |  |  |  |  |  |
| MAX                                   | 0.99                 | 0.95                    | 0.97                   | 0.83                          | 0.83                         | 1.10                   | 1.03                     | 0.93                            |  |  |  |  |  |  |
| MED                                   | 0.85                 | 0.81                    | 0.71                   | 0.57                          | 0.50                         | 0.85                   | 0.80                     | 0.65                            |  |  |  |  |  |  |
| AVG                                   | 0.85                 | 0.81                    | 0.70                   | 0.57                          | 0.51                         | 0.85                   | 0.79                     | 0.63                            |  |  |  |  |  |  |

Further information is provided at DISTRIBUTION NETWORK SAMPLING on p.19.

#### **CONCENTRATION TIME (CT)**

The concentration-time (CT) parameter determines a disinfectant dosage as the product of the concentration of free chlorine and the contact time with the water being disinfected, expressed mgmin/L. At the concentrations above, CT is achieved in storage and transit as follows:

| AVERAGE RETENTION TIMES AT VARIOUS OVERALL CONSUMPTION RATES |                                                                    |                                                                      |                  |                                                                         |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| At a consumption of                                          | In Harvey tank<br>(when supplying<br>80% of total<br>demand)/hours | In Magnesia tank<br>(when supplying<br>20% of total<br>demand)/hours | Watermains/hours | In system overall,<br>including Highway<br>Tank and<br>watermains/hours |  |  |  |  |  |  |  |  |  |
|                                                              | demand// nodis                                                     | acilialia//ilouis                                                    |                  | waterinanis/ noars                                                      |  |  |  |  |  |  |  |  |  |
| 350,000 GPD                                                  | 54                                                                 | 43                                                                   | 7                | 60                                                                      |  |  |  |  |  |  |  |  |  |
| 350,000 GPD<br>500,000 GPD                                   | ,-                                                                 | ,-                                                                   | 7 5              | · ·                                                                     |  |  |  |  |  |  |  |  |  |

#### 4. SAMPLING

Water sampling assures water quality during treatment and throughout the distribution network. Every workday, municipal staff draw samples to test in-house for turbidity and chlorine residual (and pH in 2025). Weekly samples are sent to the VCH laboratory for bacteriological testing for *E. coli* and Total Coliform. More extensive semi-annual testing at an accredited third-party lab is conducted for general chemistry, metals and contaminants. There are 14 sample locations in all:

|                                              | Harral                       | SAMPLING FOR           |           |                 |                      |  |  |  |  |  |  |
|----------------------------------------------|------------------------------|------------------------|-----------|-----------------|----------------------|--|--|--|--|--|--|
| Sample Location                              | Usual<br>source <sup>2</sup> | Residual chlorine      | Turbidity | Bacteriological | Metals,<br>chemicals |  |  |  |  |  |  |
| Harvey Plant raw                             | Harvey<br>Creek              | Before<br>chlorination | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| Harvey UV reactor                            |                              | CHIOTHALION            |           | Monthly         |                      |  |  |  |  |  |  |
| Harvey Tank                                  |                              | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| PRV-3 (Highway Tank)                         |                              | Daily                  | Daily     | Weekly          | NA: mid-<br>system   |  |  |  |  |  |  |
| Store/Cafe inside (network end)              |                              | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| Lions Bay Avenue cul-de-sac (network end)    | Harvey Plant                 | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| Kelvin Grove (Works Yard,<br>network end)    |                              | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| Kelvin Grove control room (new, network end) |                              | Realtime               | -         | -               | -                    |  |  |  |  |  |  |
| Community Centre (municipal offices)         |                              | None                   |           | Semi-a          | innual               |  |  |  |  |  |  |
| Lions Bay Beach Park                         |                              | None                   |           | Semi-a          | annual               |  |  |  |  |  |  |
| Magnesia Plant raw                           | Magnesia<br>Creek            | Before                 | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| Magnesia UV reactor                          |                              | chlorination           |           | Monthly         |                      |  |  |  |  |  |  |
| Magnesia Tank                                | Magnesia                     | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |
| PRV-5 north Bayview                          | Magnesia<br>Plant            | Daily                  | Daily     | Weekly          | NA: mid-<br>system   |  |  |  |  |  |  |
| Brunswick Beach cul-de-sac                   |                              | Daily                  | Daily     | Weekly          | Semi-annual          |  |  |  |  |  |  |

In consultation with VCH, the municipality's response to unexpected results depends on the significance of the parameter and how out of range it is, as outlined in OPERATING PROTOCOLS starting on p.43.

#### **BACTERIOLOGICAL ANALYSIS**

The *Drinking Water Protection Regulation* requires routine sampling and testing for the *E. coli*<sup>3</sup> bacterium and the larger Total Coliform (TC) bacteria group. The standard for *E. coli* in treated water is None

<sup>&</sup>lt;sup>2</sup> The entire distribution network can be and often is fed from either treatment plant for plant turnaround, flow testing and other operational requirements.

<sup>&</sup>lt;sup>3</sup>First described by Theodor von Escherich in 1885, *Escherichia coliform* is a group of bacteria that form in the colons of warm-blooded animals, that is mammals and birds. Presence of *E. coli* in a water sample indicates recent fecal contamination, and thus the possible presence of disease-causing bacteria, viruses and protozoa.

Detectable and for TC (for systems with more than 1 sample taken per month, as is the case at Lions Bay), at least 90 percent of samples with no detectable TC bacteria per 100 ml; and not any sample with more than 10 TC bacteria per 100 ml.

- In 2024, no weekly sample of treated water was positive for E. coli, but one monthly sample
  of partially treated water at the Harvey Plant UV reactor (post-UV but pre-chlorination) was
  positive, during a period of heavy rain. No sample, weekly or monthly, was positive for E. coli
  post-chlorination.
- Similarly, no weekly sample of treated water was positive for Total Coliform (other than one deemed a lab error by VCH), well exceeding the standard. However, two monthly samples of partially treated water at the Harvey Plant UV reactor and one at the Magnesia Plant UV reactor were positive for TC at the same time as the positive E. coli result.

See the testing results below for details.

|           |            | Harvey Ck.   Mag Ck.   Alberta Ck. Harvey Tank   PRV-3   Store-Café Lions Bay Ave   Kelvin Grove   Mag Tank   PRV-5   Brunswick |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |                            |
|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|----------------------------|
| 2024 Date | Days since | TC/100 ml                                                                                                                       | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | Notes                      |
| 02-Jan    |            | 27.5                                                                                                                            | ND             | N/A       | N/A            | -         | -              | ND        | ND             | N/A       | N/A            | ND        | ND             | ND        | ND             | Mag intake not operating   |
| 08-Jan    | 6          | 21.1                                                                                                                            | ND             | 16.0      | ND             | -         | -              | ND        | ND             |                            |
| 15-Jan    | 7          | 21.6                                                                                                                            | ND             | 4.1       | ND             | -         | -              | ND        | ND             |                            |
| 22-Jan    | 7          | 21.3                                                                                                                            | 2.0            | 81.3      | 2.0            | -         | -              | ND        | ND             |                            |
| 29-Jan    | 7          | 27.9                                                                                                                            | ND             | 12.0      | ND             | 1         | -              | ND        | ND             |                            |
| 05-Feb    | 7          | 14.8                                                                                                                            | ND             | 7.4       | ND             | 1         | -              | ND        | ND             |                            |
| 12-Feb    | 7          | 24.6                                                                                                                            | ND             | 21.6      | ND             | -         | -              | ND        | ND             |                            |
| 20-Feb    | 8          | 11.9                                                                                                                            | ND             | 10.8      | ND             | -         | -              | ND        | ND             |                            |
| 26-Feb    | 6          | 24.6                                                                                                                            | ND             | 11.0      | ND             | -         | -              | ND        | ND             |                            |
| 04-Mar    | 7          | 13.5                                                                                                                            | ND             | N/A       | N/A            | -         | -              | ND        | ND             | N/A       | N/A            | ND        | ND             | ND        | ND             | Mag intake not operating   |
| 11-Mar    | 7          | 36.4                                                                                                                            | ND             | 7.3       | ND             | -         | -              | ND        | ND             |                            |
| 18-Mar    | 7          | 9.8                                                                                                                             | ND             | 15.8      | ND             | 1         | -              | ND        | ND             |                            |
| 25-Mar    | 7          | 12.2                                                                                                                            | ND             | 12.1      | ND             | 1         | -              | ND        | ND             |                            |
| 02-Apr    | 8          | 17.5                                                                                                                            | ND             | 10.9      | ND             | -         | -              | ND        | ND             |                            |
| 08-Apr    | 6          | 18.7                                                                                                                            | ND             | 9.8       | ND             | -         | -              | ND        | ND             |                            |
| 15-Apr    | 7          | 14.8                                                                                                                            | ND             | 21.8      | ND             | -         | -              | ND        | ND             |                            |
| 22-Apr    | 7          | 20.1                                                                                                                            | ND             | 16.0      | ND             | 1         | -              | ND        | ND             |                            |
| 29-Apr    | 7          | 14.8                                                                                                                            | 1.0            | 11.0      | ND             | -         | -              | ND        | ND             |                            |
| 06-May    | 7          | 17.1                                                                                                                            | ND             | 18.5      | ND             | -         | -              | ND        | ND             |                            |
| 13-May    | 7          | 14.5                                                                                                                            | ND             | 7.4       | ND             | 1         | -              | ND        | ND             |                            |
| 21-May    | 8          | 42.6                                                                                                                            | ND             | 14.0      | ND             | -         | -              | ND        | ND             | 14        | ND             | ND        | ND             | Mag Tank lab error         |
| 27-May    | 6          | 21.6                                                                                                                            | ND             | 6.3       | ND             | -         | -              | ND        | ND             |                            |
| 03-Jun    | 7          | 51.2                                                                                                                            | ND             | 253.9     | 6.3            | 1         | -              | ND        | ND             |                            |
| 10-Jun    | 7          | N/A                                                                                                                             | N/A            | N/A       | N/A            | -         | -              | ND        | ND             | Verbal only                |
| 17-Jun    | 7          | 27.5                                                                                                                            | ND             | 18.5      | ND             | -         | -              | ND        | ND             |                            |
| 24-Jun    | 7          | 59.8                                                                                                                            | ND             | 20.1      | ND             | -         | -              | ND        | ND             | ND        | ND             | ND        | ND             | ND        | ND             | N/A       | N/A            | ND        | ND             | ND        | ND             | ND        | ND             | Kelvin Grove sample missed |
| 02-Jul    | 8          | 93.1                                                                                                                            | ND             | 21.6      | ND             | -         | -              | ND        | ND             |                            |
| 08-Jul    | 6          | 99.1                                                                                                                            | 1.0            | 44.1      | ND             | -         |                | ND        | ND             |                            |
| 15-Jul    | 7          | 115.3                                                                                                                           | ND             | 70.8      | ND             | -         | -              | ND        | ND             |                            |
| 22-Jul    | 7          | 209.8                                                                                                                           | 2.0            | 187.2     | 1.0            | -         | -              | ND        | ND             |                            |
| 29-Jul    | 7          | 488.4                                                                                                                           | 2.0            | 613.1     | 3.1            | -         | -              | ND        | ND             |                            |

|           |            | Harve               | y Ck.          | Mag       | Ck.            | Albert    | a Ck.          | Harvey    | / Tank         | PR\       | /-3            | Store     | -Café          | Lions B   | ay Ave         | Kelvin    | Grove          | Mag       | Tank           | PR        | <b>V-5</b>     | Bruns     | wick           |             |
|-----------|------------|---------------------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-------------|
| 2024 Date | Days since | TC/100 ml           | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | TC/100 ml | E. coli/100 ml | Notes       |
| 06-Aug    | 8          | 261.3               | 2.0            | 86.0      | ND             | -         | -              | ND        | ND             |             |
| 12-Aug    | 6          | 410.6               | ND             | 155.3     | ND             | -         | -              | ND        | ND             |             |
| 19-Aug    | 7          | 275.5               | 1.0            | 125.0     | ND             | -         | -              | ND        | ND             |             |
| 26-Aug    | 7          | 260.3               | 2.0            | 290.9     | 2.0            |           | 5.2            | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 03-Sep    | 8          | 142.1               | ND             | 135.4     | ND             | N/A       | N/A            | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | _         | _              | ND        | ND             |             |
| 09-Sep    | 6          | 115.3               | ND             | 235.9     | ND             | 126.6     | ND             | ND        | ND             |             |
| 16-Sep    | 7          | 95.9                | 2.0            | 98.8      |                | 108.6     | ND             | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 23-Sep    | 7          | 123.6               | 1.0            | 109.2     | 1.0            | 71.7      | ND             | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | ND        | ND             | ND        | ND             |             |
| 01-Oct    | 8          | 53.7                | 1.0            | RM        | RM             | 101.7     | ND             | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         | _              | ND        | ND             | Verbal only |
| 07-Oct    | 6          | 56.1                | ND             | _         |                | 156.5     |                | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 15-Oct    | 8          | 83.3                | ND             | 33.1      |                |           | -              | ND        | ND             | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                |           |                | ND        | ND             |             |
| 21-Oct    | 6          | 128.1               | 2.0            |           |                | 198.9     |                | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 28-Oct    | 7          | 98.8                | ND             |           |                | 198.8     | ND             | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                |           | -              | ND        | ND             |             |
| 04-Nov    | 1          | <mark>1413.6</mark> |                |           |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 12-Nov    | 8          | 48.7                | 2.0            | 920.8     |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 18-Nov    | 6          | 41.4                | 1.0            | 21.1      |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 25-Nov    | 7          | 35.5                | ND             | 24.3      |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                |           |                | ND        | ND             |             |
| 02-Dec    | 7          | 22.8                | 1.0            | 17.5      |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                | -         |                | ND        | ND             |             |
| 09-Dec    | 7          | 20.1                | ND             | 19.5      |                | -         | -              | ND        |                | ND        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                |           |                | ND        | ND             |             |
| 16-Dec    | 7          | 23.1                | ND             |           | ND             | -         | -              | ND        |                | RM        |                | ND        | ND             | ND        | ND             | ND        | ND             | ND        |                |           |                | ND        | ND             |             |
| 23-Dec    | 7          | LC                  | LC             | LC        | LC             | -         | -              | LC        | LC             |             |

ND Non-detectable

RM Result missing (from laboratory)

Not operatingLC Laboratory closed

N/A Not available (see Notes column)

#### POST-UV, PRE-CHLORINATION EXCEEDANCES IN NOVEMBER

Monthly samples are collected after UV and before chlorination to confirm UV effectiveness:

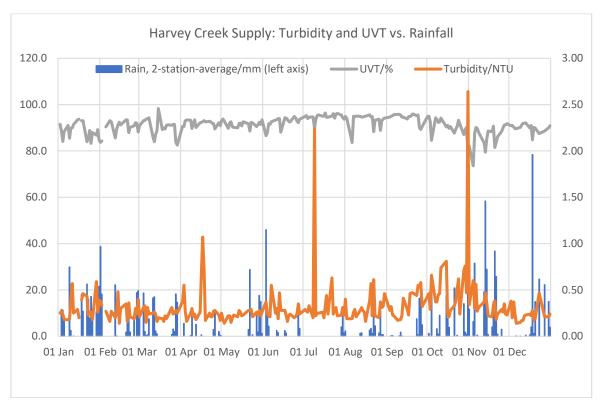
|                 |                 | Post-UV Re | eactor, Harvey | Post-UV Rea | actor, Magnesia |
|-----------------|-----------------|------------|----------------|-------------|-----------------|
| SAMPLE DATE     | Days since last | TC/100 ml  | E. coli/100 ml | TC/100 ml   | E. coli/100 ml  |
| 08-Jan          | 1               | ND         | ND             | ND          | ND              |
| 12-Feb          | 35              | ND         | ND             | ND          | ND              |
| 11-Mar          | 27              | ND         | ND             | ND          | ND              |
| 02-Apr          | 22              | ND         | ND             | ND          | ND              |
| 13-May          | 41              | ND         | ND             | ND          | ND              |
| 17-Jun          | 35              | ND         | ND             | ND          | ND              |
| 02-Jul          | 15              | ND         | ND             | ND          | ND              |
| 06-Aug          | 35              | ND         | ND             | ND          | ND              |
| 03-Sep          | 28              | ND         | ND             | ND          | ND              |
| 01-Oct          | 28              | ND         | ND             | ND          | ND              |
| 4-Nov           | 34              | 8.7        | 6.4            | ND          | ND              |
| 12-Nov (retest) | 8               | ND         | ND             | -           | -               |
| 18-Nov (retest) | 6               | 1.0        | ND             | 1.0         | ND              |
| 25-Nov          | 7               | ND         | ND             | ND          | ND              |
| 02-Dec          | 7               | ND         | ND             | ND          | ND              |

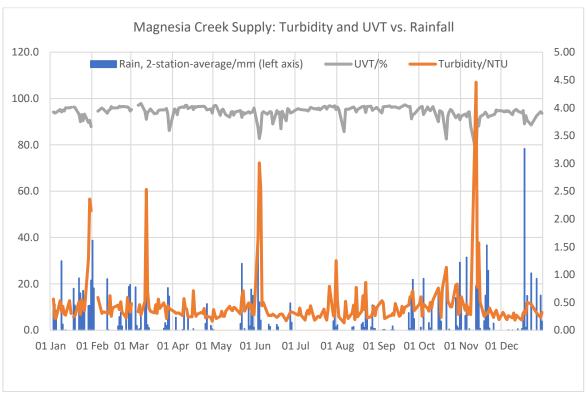
ND Non-detectable

- Not available or plant not operating.

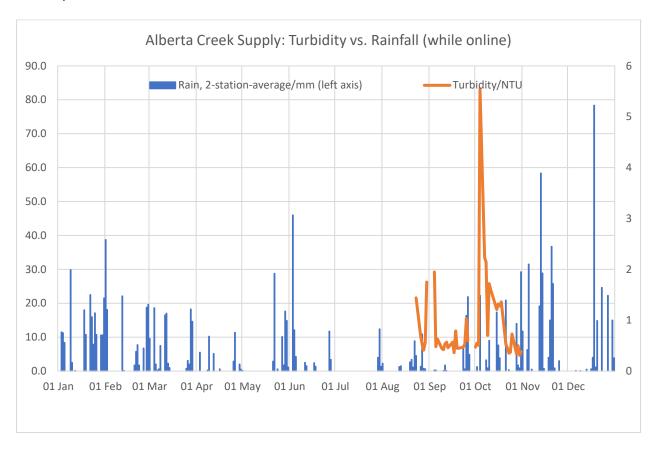
The regular November sample was positive for *E. coli* and TC at the Harvey Plant, and positive for TC at both plants upon a second retest on Nov. 18. Nov. 4 raw water turbidity reached 2.7 and 4.5 at Harvey and Magnesia respectively, and UVT dropped to 75% and 80%. The operator logs state that sand was found in the Harvey reactor. Clearly, UV alone was not sufficient, although the post-chlorination samples in the respective tanks were in all cases non-detectable. *The Nov. 4 and Nov. 12 results were missed in the first version of this report and procedures have been changed to require a crosscheck on the recording of lab data.* 

#### **TURBIDITY ANALYSIS**


As outlined in the <u>Source Water Protection Plan</u>, the system's raw water arises in steep, forested catchments, and is particularly subject to turbidity caused by soil washing into the creeks during rain events. Turbidity is a measure of particles in a sample of water determined using a light-scattering method and measured in Nephelometric<sup>4</sup> Turbidity Units (NTU).


Both UV and chlorine treatment are affected by turbidity, which shadows, absorbs and scatters UV light, and which provides crevices where bacteria may avoid direct contact with chlorine. **Chlorine dosing is therefore increased whenever turbidity rises above 1 NTU in source water.** 

In 2024, based on daily samples, raw water turbidity was generally 0.25 NTU in Harvey Creek and 0.5


<sup>&</sup>lt;sup>4</sup> Nephelometry (from the Greek nephelo: cloud) is an analytical technique used to measure the amount of turbidity or cloudiness in a solution caused by the presence of suspended insoluble particles.

NTU in Magnesia Creek, but spiked as high as 2.75 NTU and 4.5 NTU respectively during significant rain events:

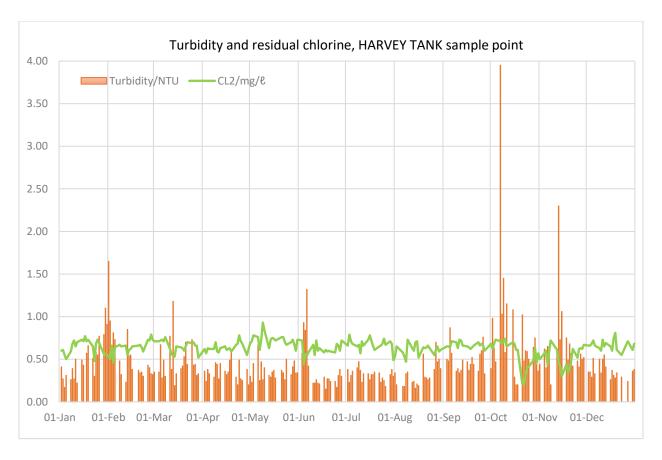


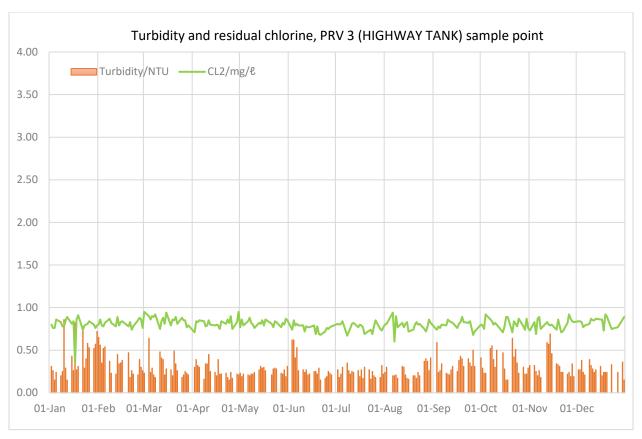


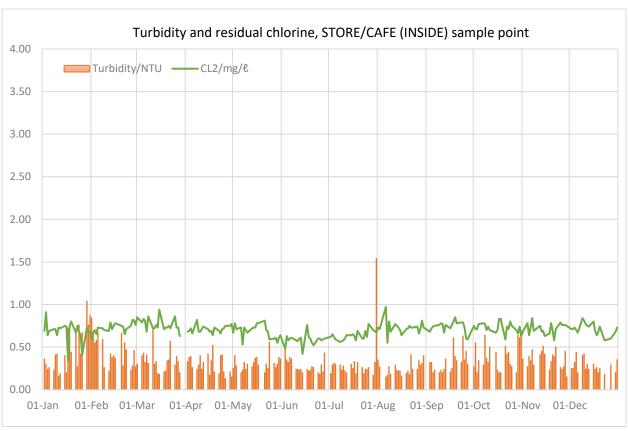
After coming online in mid-August (but not utilised for production), Alberta Creek was also sampled for turbidity:

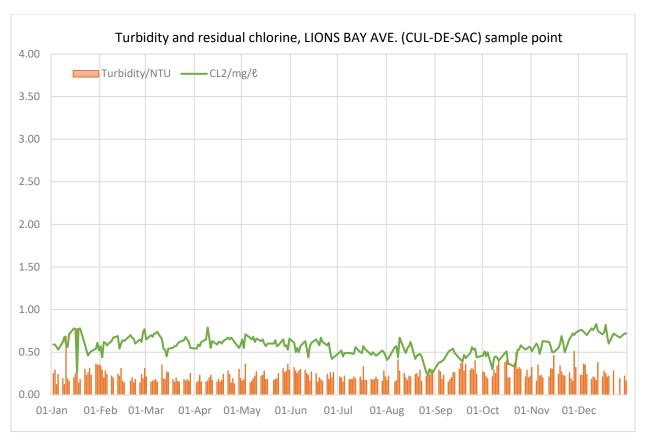


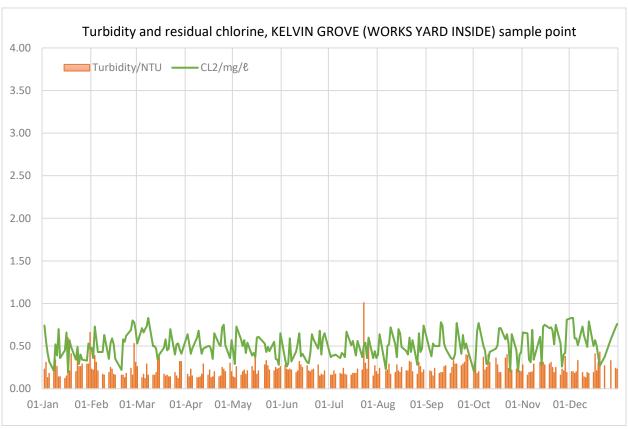
See APPENDIX 3: SOURCE WATER TURBIDITY & UVT for detailed readings, and CONDITION 3: LOW TURBIDITY on p.41 for further discussion on how Lions Bay is addressing turbidity for continued filtration exemption.

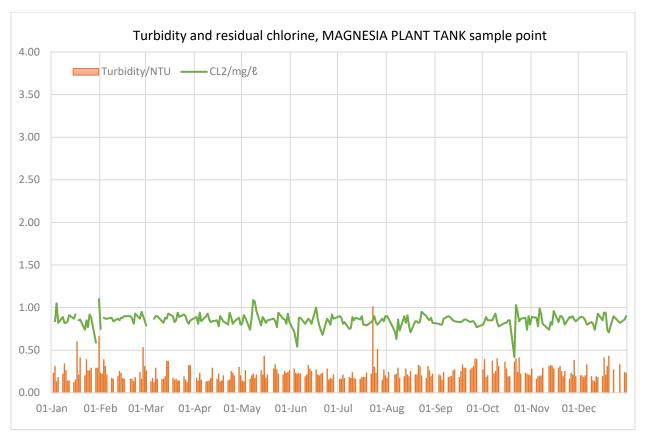

#### DISTRIBUTION NETWORK SAMPLING

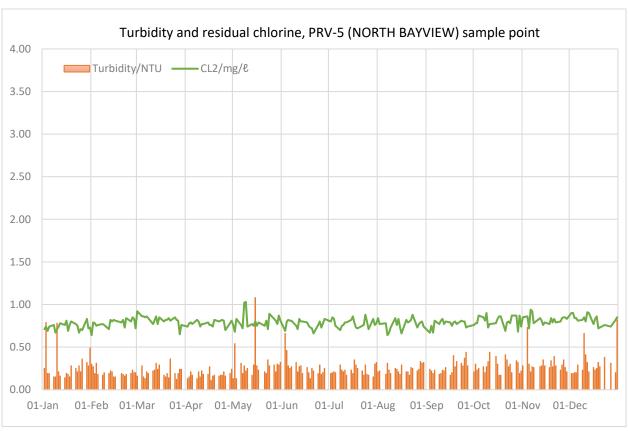

The municipality collects daily samples at eight locations agreed with VCH<sup>5</sup> for testing in house for turbidity and chlorine residual. Detailed data are provided in APPENDIX 4: *TREATED* WATER TURBIDITY, CHLORINE RESIDUAL on p.66, summarised as follows:

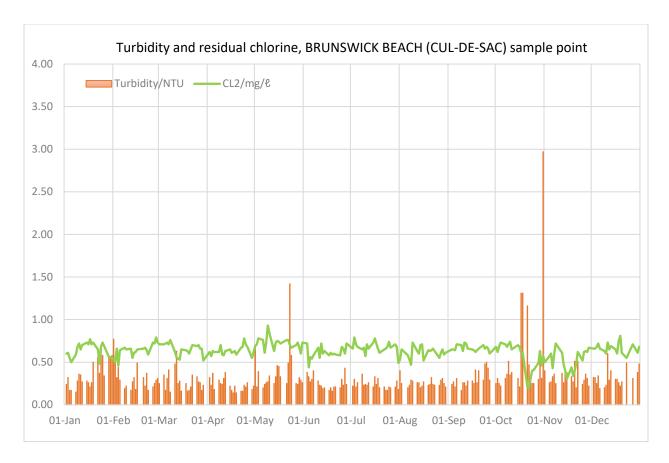

<sup>&</sup>lt;sup>5</sup> In 2025 the municipality will formalise VCH permission to move the "Kelvin Grove" chlorine sample from the Public Works Yard sink to the live reading taken at the Kelvin Grove control room, plus turbidity when the instrument is upgraded.


| SUM          | SUMMARY: 2024 CHLORINE RESIDUALS/mg/L |                         |                        |                               |                              |                        |                          |                                 |  |  |  |  |  |
|--------------|---------------------------------------|-------------------------|------------------------|-------------------------------|------------------------------|------------------------|--------------------------|---------------------------------|--|--|--|--|--|
|              | Harvey Plant<br>Tank                  | PRV-3 (Highway<br>Tank) | Café/Store<br>(inside) | Lions Bay Ave<br>(cul-de-sac) | Kelvin Grove<br>(Works Yard) | Magnesia Plant<br>Tank | PRV-5 (north<br>Bayview) | Brunswick Beach<br>(cul-de-sac) |  |  |  |  |  |
| SAMPLE COUNT | 248                                   | 249                     | 248                    | 249                           | 249                          | 243                    | 249                      | 249                             |  |  |  |  |  |
| MIN          | 0.64                                  | 0.35                    | 0.34                   | 0.23                          | 0.19                         | 0.42                   | 0.64                     | 0.20                            |  |  |  |  |  |
| MAX          | 0.99                                  | 0.95                    | 0.97                   | 0.83                          | 0.83                         | 1.10                   | 1.03                     | 0.93                            |  |  |  |  |  |
| MED          | 0.85                                  | 0.81                    | 0.71                   | 0.57                          | 0.50                         | 0.85                   | 0.80                     | 0.65                            |  |  |  |  |  |
| AVG          | 0.85                                  | 0.81                    | 0.70                   | 0.57                          | 0.51                         | 0.85                   | 0.79                     | 0.63                            |  |  |  |  |  |


Graphical summaries of each sample location follow, scaled to 4 NTU, the highest reading obtained in 2024:



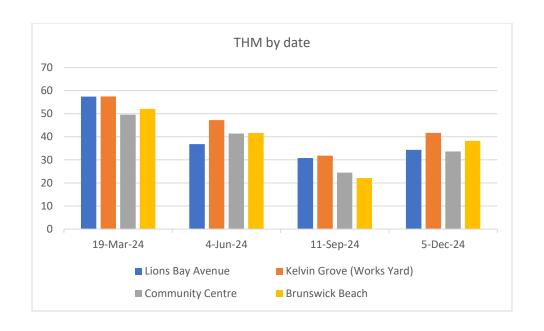












#### NOTE ON CHLORINE DISINFECTION BY-PRODUCTS

Chlorine reacts with naturally occurring organic and inorganic matter, especially arising in surface supply raw water, to form disinfection byproducts, DBPs. Lions Bay tests for the DBPs trihalomethane<sup>6</sup> (which is considered potentially harmful to the liver, kidneys and central nervous system, and potentially carcinogenic) and the haloacetic acid (HAA) group, considered probably carcinogenic:

|                                                                                                                                    | 2024 TOTAL TRIHALOMETHANES/μg/L |      |      |      |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|------|------|--|--|--|--|--|--|--|--|
| Health Canada Maximum Allowable Concentration: 100 micrograms per litre (µg/L) averaged over quarterly sample results <sup>7</sup> |                                 |      |      |      |  |  |  |  |  |  |  |  |
| Sample location → Lions Bay Avenue Kelvin Grove Community Centre Brunswick Beach                                                   |                                 |      |      |      |  |  |  |  |  |  |  |  |
| Sample date ♥ (Works Yard)                                                                                                         |                                 |      |      |      |  |  |  |  |  |  |  |  |
| 19 Mar.                                                                                                                            | 57.4                            | 57.5 | 49.6 | 52.1 |  |  |  |  |  |  |  |  |
| 4 Jun.                                                                                                                             | 36.8                            | 47.2 | 41.4 | 41.6 |  |  |  |  |  |  |  |  |
| 11 Sep.                                                                                                                            | 30.8                            | 31.8 | 24.5 | 22.1 |  |  |  |  |  |  |  |  |
| 5 Dec.                                                                                                                             | 34.3                            | 41.7 | 33.6 | 38.2 |  |  |  |  |  |  |  |  |
| Average                                                                                                                            | 39.8                            | 44.6 | 37.3 | 38.5 |  |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>6</sup> Halogens are the elements in the same periodic table group as chlorine: fluorine, bromine and iodine.

 $<sup>^{7}</sup>$  US EPA's limit for THM has been 80 µg/L since Dec. 1998.

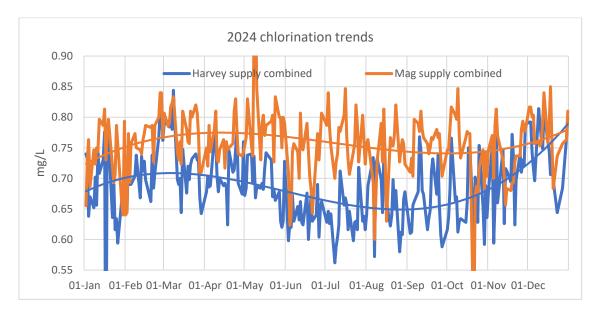


| 2024 HALOACETIC ACIDS/μg/L                                                                                 |        |              |      |       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--------|--------------|------|-------|--|--|--|--|--|--|--|
| Health Canada Maximum Allowable Concentration: 80 µg/L averaged over quarterly sample results <sup>8</sup> |        |              |      |       |  |  |  |  |  |  |  |
| Sample location → Lions Bay Kelvin Grove Community Centre Brunswick                                        |        |              |      |       |  |  |  |  |  |  |  |
| Sample date $lacktriangle$                                                                                 | Avenue | (Works Yard) |      | Beach |  |  |  |  |  |  |  |
| 19 Mar.                                                                                                    | 57.2   | 59.0         | 48.6 | 53.2  |  |  |  |  |  |  |  |
| 4 Jun.                                                                                                     | 55.6   | 49.9         | 54.2 | 57.5  |  |  |  |  |  |  |  |
| 11 Sep.                                                                                                    | 31.9   | 29.7         | 28.2 | 25.5  |  |  |  |  |  |  |  |
| 5 Dec.                                                                                                     | 39.6   | 38.2         | 36.0 | 28.4  |  |  |  |  |  |  |  |
| Average                                                                                                    | 46.1   | 44.2         | 41.8 | 41.2  |  |  |  |  |  |  |  |



 $<sup>^{8}</sup>$  US EPA's limit for HAA5 (the total of monochloroacetic, dichloroacetic, trichloroacetic, monobromoacetic and dibromoacetic acids) of 60  $\mu$ g/L was set in Nov. 2004.

The *Guidelines* state that utilities should make every effort to maintain concentrations ALARA (As Low As Reasonably Achievable) without compromising the effectiveness of disinfection. While Lions Bay water met the Maximum Allowable Concentrations in all cases, the *Guidelines* also state that precursor removal limits formation, a pointer to future flocculation and filtration as a solution to DBPs.


#### NOTE ON CHLORINE DOSING

The effect of tighter control of chlorine dosing in the 3<sup>rd</sup> and 4<sup>th</sup> quarters is apparent in the DBP results above: less chlorine leads to lower DBP. Operators dial in conservative (high) chlorine dosing to ensure residual throughout the distribution network, particularly in preparation for rain, resulting in many daily samples with two to five times the municipality's 0.2 mg/L chlorine target. High chlorine certainly assists disinfection, but DBPs besides, also gives rise to complaints of bleach taste and smell, especially closer to the treatment plants.

With availability in 2024 of continuous chlorine measurement at the Kelvin Grove control room network-end sample point, new operating guidelines were established to safely reduce chlorine dosing at at least the Harvey Plant (which almost always supplies this location):

| CHLORINE TARGET DOSING (mg/L)          |                        |                        |  |  |  |  |  |  |  |  |
|----------------------------------------|------------------------|------------------------|--|--|--|--|--|--|--|--|
| SUPPLY SITUATION                       | HARVEY TANK OUTLET     | MAG TANK OUTLET        |  |  |  |  |  |  |  |  |
| June 1 – 15 Sep. (lower rain)          | 0.4 VCH permit minimum | 0.6 VCH permit minimum |  |  |  |  |  |  |  |  |
| 16 Sep. – May 31 (higher rain)         | 0.6                    | 0.8                    |  |  |  |  |  |  |  |  |
| Day before rain expected               | 0.5 min.               | 0.7 min.               |  |  |  |  |  |  |  |  |
| Light rain days (2-10 mm expected)     | 0.6                    | 0.8                    |  |  |  |  |  |  |  |  |
| Moderate rain days (10-20 mm expected) | 0.7                    | 0.9                    |  |  |  |  |  |  |  |  |
| Heavy rain days (20+ mm expected)      | 0.9                    | 1.1                    |  |  |  |  |  |  |  |  |
| Landslide weather                      | 1.0                    | 1.2                    |  |  |  |  |  |  |  |  |

With no continuous end-point sampling for Magnesia supply yet (coming in 2025), chlorine levels at the Magnesia Plant are more conservative. The arithmetic mean of all sample points chlorine results shows the tighter dosing control in the third quarter, before dosing was increased to anticipate winter rain and increased turbidity:



Continuous monitoring for chlorine and turbidity is also being implemented at the Brunswick and Lions Bay Ave. network end points in 2025.

#### **CHLORINE FAQS**

At the suggestion of VCH, the following Frequently Asked Questions on chlorine water treatment were distilled from various sources for public information.

#### What is chlorine?

Chlorine is a common element in nature, where it is always found combined with other elements. The largest amount of chlorine on earth is in the oceans as sodium chloride, salt. Salt and water are commonly used to manufacture the chlorine used to treat drinking water.

#### Why is chlorine added to drinking water?

Chlorine is a versatile disinfectant that kills many types of bacteria, viruses and parasites (pathogens) that cause water-borne infections. Some water-borne infections can cause severe illness and even death. Water producers add chlorine to drinking water to protect public health. For more information on water-borne infections, see HealthLinkBC File #49a Water-borne Infections in British Columbia.

#### How long has chlorine been used to disinfect water?

Chlorine disinfectants were first added to a public water supply in North America in 1908. By the 1920s, thousands of cities worldwide were using chlorine disinfectants to treat drinking water, leading to a drastic reduction in water-borne infections such as typhoid fever and cholera. Infant mortality also declined. All water utilities in Canada use some form of chlorine disinfectant to treat drinking water.

#### How is chlorine added to my drinking water?

There are many different chlorine disinfectant products and each is added to water differently, but once added to water they all work in a similar way. For this reason, they all get the generic labeling of "chlorine." Water suppliers choose the product used based on factors like cost, source water, size of the water system and whether other forms of treatment are needed.

#### What is secondary disinfection?

After being disinfected, water travels through the distribution system to your home through a network of pipes. In some cases, pipes can leak or break and contaminate the water. Chlorine disinfectants protect water against this contamination as it travels to the tap.

#### Can my water supplier use anything else to disinfect my drinking water?

Ultraviolet (UV) light and ozone are also used to disinfect drinking water. Because these approaches do not provide a residual effect, they cannot provide protection against regrowth in, or contamination from, the pipes water travels through. There are further benefits to using chlorine disinfectants over other treatments. They can be easier to handle and less expensive, making them a preferred choice for water supply systems with limited funds. If you do not like the smell or taste of chlorine in your drinking water you can use a filter system (such as a pitcher filter) or boil your water and allow it to cool before using.

#### Can the chlorine added to my drinking water harm me?

Chlorine can be dangerous in very high concentrations. But there is no evidence that chlorine disinfectants are harmful to people in the small amounts needed to disinfect drinking water. Most Canadian treated water does not have chlorine levels over 2 mg/L (also known as parts per million).

#### Can chlorine by-products harm me?

When chlorine is added to water it reacts with any organic content and creates chlorine by-products. Health Canada sets limits for chlorine by-products to reduce the risk to human health. The addition of chlorine to drinking water has greatly reduced the risk of waterborne diseases. Although other disinfectants are available, chlorine remains the choice of water treatment experts. Current scientific data show that the benefits of chlorination are much greater than any health risks from by-products.

#### Is there anything I can do about the taste and smell?

- Put a pitcher of water in the refrigerator and let it sit uncovered for a few hours. This will allow the chlorine smell to leave the water.
- Use cold water for all drinking water. Cold water has fewer taste and smell concerns. (Using cold water also makes the water less likely to absorb lead and copper from plumbing.)
- Use a filter. All water treatment units, even those in your home, require regular maintenance to work properly. Water treatment units that are not properly maintained will lose their effectiveness over time. In some cases, unmaintained units can make water quality worse and make you sick.
  - o Most common point-of-use filters (e.g. pitcher filters) will remove chlorine taste and smell.
  - Granular activated carbon filters will remove chlorine taste and smell. They are usually more expensive than point-of-use filters. They can be installed either at the tap/sink or as whole-house filters.

#### METALS AND OTHER PARAMETERS

Trace metals enter the municipal raw water system from the environment, during treatment and from the distribution network. Some metals are essential for life, while others may cause chronic or even acute poisoning in high doses.

As with chlorine above, Health Canada sets limits for most metals in drinking water, summarised in APPENDIX 1: HEALTH CANADA *GUIDELINES FOR DRINKING WATER QUALITY* (CHEMICAL on p.57.

Trace metals and some other substances are analysed twice a year. Lab analysis results are tabulated below and provided verbatim in APPENDIX 5A: BIANNUAL METALS AND CHEMISTRY (p.77).

March 2024, selected metals and other parameters (note that the entire system was running on Harvey Creek supply when sampled)

| 19 Mar. 2024                                      | Max.<br>Acceptable     | Units        | Harvey<br>Creek  | Harve         | y Tank         | Store       | e/Café        | Lions Bay     | Ave. (end)     |               | Beach Park<br>iroom) |                 | ove (Works<br>sink) |                 | nity Centre<br>nal offices) | Magnesia<br>Creek Raw | Magnes      | sia Tank      | Brunswic    | k Ave (end)    |
|---------------------------------------------------|------------------------|--------------|------------------|---------------|----------------|-------------|---------------|---------------|----------------|---------------|----------------------|-----------------|---------------------|-----------------|-----------------------------|-----------------------|-------------|---------------|-------------|----------------|
| Water from Harvey Creek Water from Magnesia Creek | Concentration<br>(MAC) |              | Raw<br>Water     | 1st Draw      | After flush    | 1st<br>Draw | After flush   | 1st Draw      | After flush    | 1st Draw      | After flush          | 1st Draw        | After flush         | 1st<br>Draw     | After flush                 | Water                 | 1st Draw    | After flush   | 1st<br>Draw | After flush    |
| Biochemical oxygen<br>demand [BOD]                |                        | mg/L         | <2.0             | -             | <2.0           | -           | <2.0          | -             | <2.0           | -             | <2.0                 | -               | <2.0                | -               | <2.0                        | <2.0                  | -           | <2.0          | -           | <2.0           |
| Carbon, total organic [TOC]                       | 7.0 - 10.5             | ma/L         | 1.72             | -             | 2.23           | -           | 1.78          | _             | 2.04           | _             | 1.94                 | -               | 1.96                | -               | 1.83                        | 1.32                  | -           | 1.42          | -           | 1.89           |
| Aluminum                                          | 2.9                    | mg/L         | 0.0594           | 0.0542        | 0.0624         | 0.0583      | 0.0588        | 0.0594        | 0.0627         | 0.0440        | 0.0626               | 0.0436          | 0.0625              | 0.0390          | 0.0580                      | 0.0403                | 0.0302      | 0.0572        | 0.0639      | 0.0631         |
| Antimony                                          | 0.006                  | mg/L         |                  | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Arsenic                                           | 0.010 ALARA            | mg/L         | 0.00011          | 0.00011       | 0.00011        | 0.00013     | 0.00012       | 0.00015       | 0.00013        | 0.00013       | 0.00013              | 0.00016         | 0.00014             | 0.00014         | 0.00012                     | 0.00013               | 0.00011     | 0.00015       | 0.00012     | 0.00014        |
| Barium                                            | 2                      | mg/L         | 0.00128          | 0.00208       | 0.00137        | 0.00150     | 0.00136       | 0.00160       | 0.00148        | 0.00169       | 0.00153              | 0.00236         | 0.00165             | 0.00147         | 0.00134                     | 0.00143               | 0.00212     | 0.00185       | 0.00155     | 0.00150        |
| Beryllium                                         |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Bismuth                                           |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | 0.000062      | ND             | 0.000052      | ND                   | ND              | ND                  | 0.00196         | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Boron                                             | 5                      | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | 0.021           | ND                  | 0.018           | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Cadmium                                           | 0.007                  | mg/L         | ND               | 0.0000291     | ND             | ND          | ND            | ND            | ND             | 0.0000089     | ND                   | 0.0000065       | ND                  | ND              | ND                          | 0.0000147             | 0.0000608   | 0.0000187     | ND          | ND             |
| Calcium                                           |                        | mg/L         | 1.27             | 1.70          | 1.41           | 1.54        | 1.50          | 1.90          | 1.75           | 1.69          | 1.55                 | 2.23            | 1.81                | 1.86            | 1.68                        | 2.82                  | 3.65        | 3.27          | 1.72        | 1.68           |
| Cesium                                            |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Chromium                                          | 0.05                   | mg/L         | ND               | ND            | ND             | ND          | ND            | 0.00111       | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Cobalt                                            |                        | mg/L         | ND               | ND            | ND             | 0.00026     | ND            | ND            | ND             | ND            | ND                   | 0.00024         | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Copper                                            | 2                      | mg/L         | 0.00126          | 0.714         | 0.00638        | 0.0511      | 0.00617       | 0.00124       | 0.00090        | 0.208         | 0.0201               | 0.0994          | 0.00409             | 0.125           | 0.0178                      | 0.00648               | 0.753       | 0.00509       | 0.00104     | 0.00082        |
| Iron                                              | 0.005.41.45.4          | mg/L         | ND               | 0.018         | ND             | 0.032       | 0.030         | 0.014         | 0.012          | 0.024         | 0.010                | 0.263           | 0.025               | 0.016           | 0.032                       | 0.011                 | 0.016       | 0.021         | 0.019       | 0.017          |
| Lead                                              | 0.005 ALARA            | mg/L         | ND               | 0.00474       | 0.000065       | 0.00283     | 0.000416      | 0.000051      | ND             | 0.0131        | 0.000424             | 0.00874         | 0.000247            | 0.00138         | 0.000104                    | 0.000110              | 0.00151     | ND            | ND          | ND             |
| Lithium                                           |                        | mg/L         | ND<br>0.404      | ND<br>0,230   | ND<br>0.201    | ND<br>0.291 | ND<br>0.199   | ND<br>0.258   | ND<br>0.240    | ND<br>0.238   | ND<br>0.216          | 0.0044<br>0.712 | ND<br>0.222         | 0.0022          | ND<br>0.203                 | ND<br>0.425           | ND<br>0.534 | ND<br>0.511   | ND<br>0.230 | ND<br>0.227    |
| Magnesium                                         | 0.12                   | mg/L         | 0.184<br>0.00024 | 0.230         | 0.00031        | 0.291       | 0.199         | 0.258         | 0.00024        | 0.00046       | 0.00028              | 0.712           | 0.00034             | 1.15<br>0.00031 | 0.203                       | 0.425                 | 0.00127     | 0.00105       | 0.230       | 0.00032        |
| Manganese                                         |                        | mg/L         | 0.00024<br>ND    |               |                | 0.00085     | 0.00038<br>ND |               | 0.00024<br>ND  | 0.00046       |                      | 0.00547         | 0.00034<br>ND       | 0.00031         | 0.00037<br>ND               |                       |             | 0.00105<br>ND | 0.00036     |                |
| Mercury<br>Molybdenum                             | 0.001                  | mg/L<br>ma/L | 0.000201         | 0.000228      | ND<br>0.000227 | 0.000252    | 0.000240      | 0.000332      | 0.000273       | 0.000244      | ND<br>0.000248       | 0.000273        | 0.000261            | 0.000262        | 0.000234                    | ND<br>0.000155        | 0.000172    | 0.000171      | 0.000252    | ND<br>0.000261 |
| Nickel                                            |                        | mg/L         | ND               | 0.000228      | 0.000227<br>ND | 0.000232    | ND            | 0.000332      | 0.000273<br>ND | 0.000244      | ND                   | 0.000273        | ND                  | 0.000262        | ND                          | ND                    | 0.000172    | ND            | ND          | ND             |
| Phosphorus                                        |                        | ma/L         | ND<br>ND         | 0.00004<br>ND | ND<br>ND       | ND          | ND<br>ND      | 0.00003<br>ND | ND<br>ND       | 0.00063<br>ND | ND<br>ND             | 0.00316<br>ND   | ND<br>ND            | ND              | ND<br>ND                    | ND<br>ND              | ND          | ND<br>ND      | ND<br>ND    | ND             |
| Potassium                                         |                        | ma/L         | 0.079            | 0.084         | 0.084          | 0.085       | 0.082         | 0.102         | 0.094          | 0.089         | 0.083                | 0.099           | 0.087               | 0.092           | 0.084                       | 0.078                 | 0.091       | 0.095         | 0.088       | 0.087          |
| Rubidium                                          |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | 0.00021        | ND            | ND                   | ND              | ND                  | 0.00021         | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Selenium                                          | 0.05                   | ma/L         | ND               | ND            | ND ND          | ND ND       | ND<br>ND      | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | 0.000081              | 0.000127    | 0.000137      | ND          | ND             |
| Silicon                                           | 0.00                   | mg/L         | 1.87             | 2.14          | 1.94           | 2.13        | 2.04          | 2.43          | 2.25           | 2.18          | 2.10                 | 2.17            | 2.20                | 2.09            | 2.04                        | 4.07                  | 4.71        | 4.57          | 2.14        | 2.13           |
| Silver                                            |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | 0.000011    | ND            | ND          | ND             |
| Sodium                                            |                        | ma/L         | 0.606            | 2.13          | 2.08           | 2.15        | 2.12          | 2.25          | 2.27           | 2.24          | 2.19                 | 2.36            | 2.23                | 2.26            | 2.12                        | 1.36                  | 3.14        | 3.06          | 2.25        | 2.22           |
| Strontium                                         | 7                      | ma/L         | 0.00401          | 0.00543       | 0.00437        | 0.00461     | 0.00454       | 0.00554       | 0.00510        | 0.00510       | 0.00458              | 0.00567         | 0.00480             | 0.00522         | 0.00492                     | 0.0150                | 0.0191      | 0.0169        | 0.00510     | 0.00511        |
| Sulfur                                            |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | 0.50          | ND             | ND            | ND                   | ND              | ND                  | 0.52            | ND                          | 1.98                  | 2.97        | 2.64          | ND          | ND             |
| Tellurium                                         |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Thallium                                          |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Thorium                                           |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Tin                                               |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | 0.00063         | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Titanium                                          |                        | mg/L         | ND               | 0.00057       | ND             | ND          | ND            | ND            | ND             | ND            | 0.00031              | ND              | ND                  | ND              | ND                          | ND                    | 0.00032     | 0.00040       | ND          | 0.00033        |
| Tungsten                                          |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Uranium                                           | 0.02                   | mg/L         | 0.000062         | 0.000036      | 0.000067       | 0.000064    | 0.000067      | 0.000068      | 0.000072       | 0.000051      | 0.000069             | 0.000050        | 0.000069            | 0.000026        | 0.000068                    | ND                    | ND          | ND            | 0.000071    | 0.000070       |
| Vanadium                                          |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |
| Zinc                                              | 0                      | mg/L         | ND               | 0.134         | ND             | 0.0238      | ND            | ND            | ND             | 0.0311        | ND                   | 0.0569          | ND                  | 0.133           | ND                          | 0.0041                | 0.168       | ND            | ND          | ND             |
| Zirconium                                         |                        | mg/L         | ND               | ND            | ND             | ND          | ND            | ND            | ND             | ND            | ND                   | ND              | ND                  | ND              | ND                          | ND                    | ND          | ND            | ND          | ND             |

ND: Non-detectable

ALARA: As Low As Reasonably Achievable

#### September 2024, selected metals and other parameters

| 17 Sep. 2024                    | Max. Acceptable<br>Concentration | Units        | Harvey<br>Raw | Harve      | y Tank     | Store      | /Café      | Lions Bay  | Ave. (end) | Lions Bay I<br>(wash |            |            | ove (Works<br>sink) | Communi<br>(municipa |            | Magnesia<br>Raw | Magnes           | sia Tank   | Brunswick        | k Ave (end)      |
|---------------------------------|----------------------------------|--------------|---------------|------------|------------|------------|------------|------------|------------|----------------------|------------|------------|---------------------|----------------------|------------|-----------------|------------------|------------|------------------|------------------|
| Water from Harvey Creek         | (MAC)                            |              | Water         | 1st        | After      | 1st        | After      | 1st Draw   | After      | 1st Draw             | After      | 1st        | After               | 1st Draw             | After      | Water           | 1st Draw         | After      | 1st Draw         | After            |
| Water from Magnesia Creek       |                                  |              |               | Draw       | flush      | Draw       | flush      |            | flush      |                      | flush      | Draw       | flush               |                      | flush      |                 |                  | flush      |                  | flush            |
| Biochemical oxygen demand [BOD] |                                  | mg/L         | ND            | -          | -          | -          | -          | -          | ND         | -                    | ND         | -          | ND                  | -                    | ND         | ND              | -                | ND         | -                | ND               |
| Total organic carbon [TOC]      |                                  | mg/L         | 0.64          | -          | 0.67       | -          | 0.70       | -          | 0.69       | -                    | 0.79       | -          | 0.76                | -                    | 0.73       | ND              | -                | ND         | -                | 0.56             |
| Aluminum                        | 2.9                              | mg/L         | 0.0222        | 0.0224     | 0.0222     | 0.0266     | 0.0214     | 0.0174     | 0.0240     | 0.0238               | 0.0232     | 0.0440     | 0.0290              | 0.0140               | 0.0221     | 0.0150          | 0.0134           | 0.0166     | 0.0169           | 0.0161           |
| Antimony                        | 0.006                            | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Arsenic                         | 0.010 ALARA                      | mg/L         | ND            | 0.00010    | 0.00011    | 0.00010    | 0.00011    | 0.00010    | 0.00012    | 0.00012              | 0.00011    | 0.00011    | 0.00013             | ND                   | ND         | 0.00013         | 0.00014          | 0.00014    | 0.00012          | 0.00011          |
| Barium                          | 2                                | mg/L         | 0.00223       | 0.00230    | 0.00221    | 0.00260    | 0.00220    | 0.00266    | 0.00231    | 0.00273              | 0.00254    | 0.00268    | 0.00275             | 0.00242              | 0.00213    | 0.00299         | 0.00288          | 0.00298    | 0.00334          | 0.00331          |
| Beryllium                       |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Bismuth                         | _                                | mg/L         | ND            | ND         | ND         | ND         | ND         | 0.000427   | 0.000062   | 0.000162             | 0.000067   | ND         | ND                  | 0.000923             | ND         | ND              | ND               | ND         | 0.000536         | ND               |
| Boron                           | 5                                | mg/L         | ND            | ND         | ND         | 0.018      | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | 0.012           | 0.012            | 0.012      | 0.012            | 0.012            |
| Cadmium                         | 0.007                            | mg/L         | ND            | ND<br>0.00 | ND         | 0.0000056  | ND<br>0.07 | ND<br>0.54 | ND<br>0.44 | ND<br>0.05           | ND<br>0.04 | ND<br>2.40 | ND<br>0.00          | 0.0000068            | ND<br>0.40 | 0.0000207       | 0.0000466        | 0.0000193  | 0.0000181        | 0.0000174        |
| Calcium<br>Cesium               |                                  | mg/L<br>ma/L | 2.26<br>ND    | 2.29<br>ND | 2.30<br>ND | 2.52<br>ND | 2.37<br>ND | 2.54<br>ND | 2.44<br>ND | 2.85<br>0.000010     | 2.64<br>ND | 3.46<br>ND | 2.83<br>ND          | 2.74<br>ND           | 2.43<br>ND | 6.74<br>ND      | 6.49<br>ND       | 6.43<br>ND | 6.75<br>0.000011 | 6.57<br>0.000010 |
| Chromium                        | 0.05                             | ma/L         | ND<br>ND      | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND   | 0.000010             | ND<br>ND   | ND<br>ND   | ND<br>ND            | ND<br>ND             | ND<br>ND   | ND<br>ND        | ND<br>ND         | ND<br>ND   | ND               | 0.000010<br>ND   |
| Cobalt                          | 0.05                             | ma/L         | ND            | ND<br>ND   | ND<br>ND   | 0.00022    | ND<br>ND   | ND         | ND         | ND                   | ND         | ND<br>ND   | ND<br>ND            | ND                   | ND         | ND              | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND               |
| Copper                          | 2                                | ma/L         | 0.00050       | 0.00610    | 0.00538    | 0.00022    | 0.00364    | 0.0879     | 0.0174     | 0.00119              | 0.00090    | 0.0223     | 0.00230             | 0.0869               | 0.0221     | 0.00748         | 0.306            | 0.00517    | 0.0233           | 0.00114          |
| Iron                            |                                  | ma/L         | 0.00030       | ND         | ND         | 0.0073     | 0.00304    | 0.0073     | 0.0174     | 0.00119              | 0.00030    | 0.0223     | 0.00230             | ND                   | 0.0221     | ND              | 0.067            | ND         | 0.0233           | 0.00114          |
| Lead                            | 0.005 ALARA                      | ma/L         | ND            | 0.000061   | 0.000054   | 0.00290    | 0.000297   | 0.000681   | 0.000409   | 0.000065             | ND         | 0.00162    | 0.000281            | 0.000625             | 0.000197   | 0.000137        | 0.00186          | ND         | 0.000172         | ND               |
| Lithium                         | 0.00071251101                    | ma/L         | ND            | ND         | ND         | 0.0016     | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Magnesium                       |                                  | mg/L         | 0.286         | 0.282      | 0.276      | 0.497      | 0.267      | 0.289      | 0.274      | 0.305                | 0.282      | 0.403      | 0.251               | 0.454                | 0.262      | 0.669           | 0.635            | 0.637      | 0.637            | 0.614            |
| Manganese                       | 0.12                             | mg/L         | 0.00021       | 0.00018    | 0.00018    | 0.00051    | 0.00028    | 0.00078    | 0.00037    | 0.00091              | 0.00025    | 0.00068    | 0.00056             | 0.00124              | 0.00031    | 0.00046         | 0.00067          | 0.00042    | 0.00110          | 0.00032          |
| Mercury                         | 0.001                            | mg/L         | ND            | -          | ND         | -          | ND         | -          | ND         | -                    | ND         | -          | ND                  | -                    | ND         | ND              | -                | ND         | -                | ND               |
| Molybdenum                      |                                  | mg/L         | 0.000700      | 0.000587   | 0.000574   | 0.000544   | 0.000557   | 0.000502   | 0.000570   | 0.000615             | 0.000554   | 0.000664   | 0.000584            | 0.000568             | 0.000563   | 0.000236        | 0.000235         | 0.000258   | 0.000249         | 0.000233         |
| Nickel                          |                                  | mg/L         | ND            | ND         | ND         | 0.00599    | ND         | 0.00275    | ND         | 0.00073              | ND         | 0.00157    | ND                  | 0.0310               | ND         | ND              | 0.00530          | ND         | 0.00063          | ND               |
| Phosphorus                      |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Potassium                       |                                  | mg/L         | 0.127         | 0.135      | 0.133      | 0.136      | 0.133      | 0.144      | 0.135      | 0.163                | 0.148      | 0.145      | 0.139               | 0.150                | 0.133      | 0.100           | 0.103            | 0.106      | 0.112            | 0.113            |
| Rubidium                        |                                  | mg/L         | 0.00024       | 0.00032    | 0.00030    | 0.00035    | 0.00030    | 0.00032    | 0.00028    | 0.00041              | 0.00031    | 0.00033    | 0.00029             | 0.00035              | 0.00030    | ND              | ND               | ND         | 0.00020          | ND               |
| Selenium                        | 0.05                             | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | 0.000071        | 0.000096         | 0.000087   | 0.000084         | 0.000081         |
| Silicon                         |                                  | mg/L         | 2.18          | 2.16       | 2.17       | 2.26       | 2.23       | 2.23       | 2.26       | 2.38                 | 2.28       | 2.20       | 2.25                | 2.36                 | 2.26       | 4.98            | 4.92             | 5.04       | 5.09             | 5.10             |
| Silver<br>Sodium                |                                  | mg/L         | ND<br>0.917   | ND<br>2.57 | ND<br>2.48 | ND<br>2.52 | ND<br>2.54 | ND<br>2.56 | ND<br>2.52 | ND<br>2.54           | ND<br>2.45 | ND<br>2.58 | ND<br>2.46          | ND<br>2.56           | ND<br>2.56 | ND<br>2.09      | 0.000028<br>3.56 | ND<br>3.74 | ND<br>3.70       | ND<br>3.57       |
| Strontium                       | 7                                | mg/L<br>mg/L | 0.00631       | 0.00653    | 0.00633    | 0.00728    | 0.00630    | 0.00707    | 0.00666    | 0.00796              | 0.00738    | 0.00763    | 0.00706             | 0.00762              | 0.00661    | 0.0319          | 0.0315           | 0.0308     | 0.0318           | 0.0310           |
| Sulfur                          | ,                                | mg/L         | 0.00031       | 0.00033    | 0.00033    | 0.00728    | 0.00030    | 0.00707    | 0.0000     | 0.00790              | 0.00736    | 0.00763    | 0.00700             | 0.00762              | 0.00001    | 6.09            | 5.41             | 5.56       | 5.66             | 5.47             |
| Tellurium                       |                                  | ma/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Thallium                        |                                  | ma/L         | ND            | ND<br>ND   | ND<br>ND   | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND<br>ND            | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Thorium                         |                                  | ma/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND<br>ND        | ND               | ND         | ND               | ND               |
| Tin                             |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | 0.00013              | ND         | ND         | ND                  | 0.00032              | ND         | ND              | ND               | ND         | ND               | ND               |
| Titanium                        |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Tungsten                        |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Uranium                         | 0.02                             | mg/L         | 0.000028      | 0.000032   | 0.000031   | 0.000018   | 0.000030   | 0.000020   | 0.000031   | 0.000027             | 0.000032   | 0.000020   | 0.000032            | 0.000013             | 0.000030   | ND              | ND               | ND         | ND               | ND               |
| Vanadium                        |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |
| Zinc                            | 0                                | mg/L         | ND            | ND         | ND         | 0.0450     | ND         | 0.165      | ND         | ND                   | ND         | 0.0193     | ND                  | 0.168                | 0.0037     | 0.0049          | 0.126            | ND         | 0.0084           | ND               |
| Zirconium ND: Non-detectable    |                                  | mg/L         | ND            | ND         | ND         | ND         | ND         | ND         | ND         | ND                   | ND         | ND         | ND                  | ND                   | ND         | ND              | ND               | ND         | ND               | ND               |

ND: Non-detectable

ALARA: As Low As Reasonably Achievable

All results were under the Maximum Acceptable Concentration (MAC) or other limits set by the *Guidelines*, except for the March lead results for Lions Bay Beach Park and Kelvin Grove first draws, marked in red in the table above (readings approaching the MAC are marked in yellow). Exceedances were:

| March samples for lead | Lions Bay Beach Park        | Kelvin Grove                                      |
|------------------------|-----------------------------|---------------------------------------------------|
| First draw/mg/L        | 0.0131 (262% of MAC)        | 0.00874 (175% of MAC)                             |
| After flush/mg/L       | 0.000424 (8.5% of MAC)      | 0.000247 (4.9% of MAC)                            |
| Location               | Park washroom sink,         | Public Works Yard lunchroom sink, at the end of a |
|                        | essentially unused in March | 6-inch main with the preceding user over 200 m    |
|                        |                             | away                                              |

No lead is present in Lions Bay's raw water, nor in the the municipal treatment and distribution system<sup>9</sup>, but the plumbing of most Lions Bay houses and buildings do contain lead solder. Lead readings, particularly on first draw, emphasize the need to **flush water before consumption to reduce lead before consumption** 

VCH has directed that commencing in 2025 public messaging must be produced to raise awareness of the need to flush domestic plumbing before using water. Since the 2022 reporting year, the Medical Health Officer has required the following letter to be included in Annual Reports regarding lead in water arising from domestic plumbing:

<sup>&</sup>lt;sup>9</sup> Note that significant first-draw lead readings at Harvey Tank (0.00474 mg/L in March) and Magnesia Tank (0.00186 mg/L in September) are ascribed to the sample lines themselves being lead-copper: these samples respectively went to 0.000065 mg/L and Non-Detectable after flush. These sample lines will be changed to stainless steel in 2025.



May 12th, 2022

Water System Operators

#### Re: Metals in Drinking Water - "Flush" Message in Annual Reports

Vancouver Coastal Health (VCH) is requiring all water systems to include the following health message with your next annual reports to your users:

Contamination of drinking water with Lead can have health impacts over time, and in BC the source is most likely to be plumbing fixtures within a building. Anytime the water in a particular faucet has not been used for six hours or longer, "flush" your cold-water pipes by running the water until you notice a change in temperature. This could take as little as five to thirty seconds if there has been recent heavy water use such as showering or toilet flushing. Otherwise, it could take two minutes or longer. The more time water has been sitting in your home's pipes, the more Lead it may contain.

Use only water from the cold-tap for drinking cooking, and especially making baby formula. Hot water is likely to contain higher levels of Lead.

The two actions recommended above are very important to the health of your family. They will probably be effective in reducing Lead levels because most of the Lead in household water usually comes from the plumbing in your house, not from the local water supply.

Conserving water is still important. Rather than just running the water down the drain you could use the water for things such as watering your plants.

If you have any questions, please contact you closest Drinking Water Officer noted below.

Sincerely,

Dr. Michael Schwandt Medical Health Officer Vancouver Coastal Health

- (604) 983-6793 Central Coast
- (604) 983-6793 North Shore
- (604) 485-3310 Powell River
- (604) 233-3147 Richmond
- (604) 885-5164 Sechelt
- (604) 892-2293 Squamish
- (604) 675-3800 Vancouver
- (604) 932-3202 Whistler

#### NOTE ON FLUORIDE

Like most BC water producers the municipality does not add fluoride to Lions Bay drinking water. However, interested by mentions in the press in late 2024, the three creek water sources were analysed for naturally occurring fluoride:

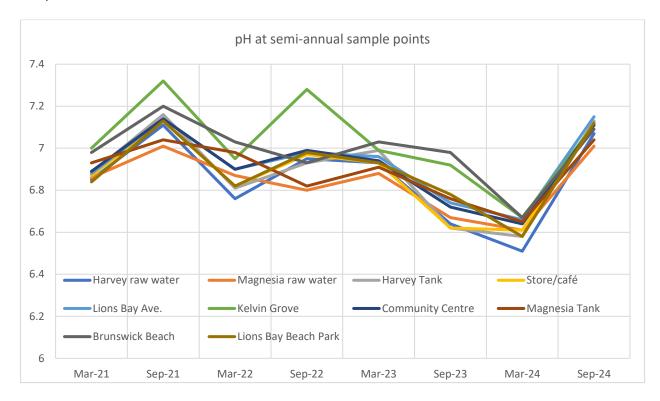
| 26 NOV. 2024 FLUORIDE/mg/L |                |               |                |  |  |  |  |  |  |  |  |
|----------------------------|----------------|---------------|----------------|--|--|--|--|--|--|--|--|
| Fluoride (detection        | Magnesia Creek | Alberta Creek | Harvey Creek   |  |  |  |  |  |  |  |  |
| limit 0.020)               | 0.027          | 0.033         | Non-detectable |  |  |  |  |  |  |  |  |

The Guidelines MAC is 1.5 mg/L and according to <a href="https://www.canada.ca/en/public-health/services/publications/healthy-living/community-water-fluoridation-across-canada.html">https://www.canada.ca/en/public-health/services/publications/healthy-living/community-water-fluoridation-across-canada.html</a>, the recommended drinking water fluoride concentration for purposes of dental cavity prevention is 0.7 mg/L. Lions Bay water is thus not a source of fluoride for such purposes.

#### **NOTE ON CAFFEINE**

Raw water samples from all three creeks were tested for caffeine in July and August to determine if human-only ablutions could be detected reaching the creeks (see Appendix NOTE ON CAFFEINE on p.33). Results were non-detectable, but there was some doubt about the lab's handling of the samples, so the test will be repeated at the peak of the 2025 hiking season.

#### NOTE ON pH


pH is a measure of the acidity or basicity of water solutions, measuring the concentration of the hydrogen ion on a logarithmic scale from 0 to 14. pH is an important consideration in water systems because acidic water is corrosive to metals, including the iron and steel in water mains, and the copper and lead in residential plumbing. Conversely, at high pHs, alkaline water is scaling, and chlorine disinfection is less efficient (see box). Health

Sodium hypochlorite hydrolyses in water:  $NaOCl + H_2O \longleftrightarrow Na^+ + HOCl + OH^-$ . HOCl, hypochlorous acid, disassociates to  $H^+ + OCl^-$ , more so at high pH. The  $OCl^-$  hypochlorite ion is 20 times less germicidal than hypochlorous acid, so overall, sodium hypochlorite is less effective at higher pHs.

Canada Guidelines indicate a pH range for drinking water of 7.0 to 10.5. Lions Bay water was well below this range on all March readings, and just over 7.0 on all September readings:

| pH AFTER SAMPLE STATION FLUSH |              |              |  |  |  |  |  |  |  |  |  |
|-------------------------------|--------------|--------------|--|--|--|--|--|--|--|--|--|
| Sample date 🗲                 | 19 Mar. 2024 | 17 Sep. 2024 |  |  |  |  |  |  |  |  |  |
| Sample location $\Psi$        |              |              |  |  |  |  |  |  |  |  |  |
| Harvey raw water              | 6.51         | 7.07         |  |  |  |  |  |  |  |  |  |
| Magnesia raw water            | 6.61         | 7.01         |  |  |  |  |  |  |  |  |  |
| Harvey Tank                   | 6.58         | 7.13         |  |  |  |  |  |  |  |  |  |
| Store/café                    | 6.61         | 7.12         |  |  |  |  |  |  |  |  |  |
| Lions Bay Ave.                | 6.66         | 7.15         |  |  |  |  |  |  |  |  |  |
| Kelvin Grove                  | 6.67         | 7.11         |  |  |  |  |  |  |  |  |  |
| Community Centre              | 6.64         | 7.11         |  |  |  |  |  |  |  |  |  |
| Magnesia Tank                 | 6.65         | 7.04         |  |  |  |  |  |  |  |  |  |
| Brunswick Beach               | 6.67         | 7.09         |  |  |  |  |  |  |  |  |  |
| Lions Bay Beach Park          | 6.58         | 7.12         |  |  |  |  |  |  |  |  |  |

Plotting the last four years' data illustrates the significant increase in pH for all September 2024 samples:



pH is not under sufficient control, and consideration of active pH control commenced in 2023. A bench pH measurement station is being commissioned in 2025 to analyse all daily hand samples to inform pH control plans.

#### NOTE ON ALKALINITY, HARDNESS & WATER STABILITY

**Alkalinity** is a measure of bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>) and hydroxide (OH<sup>-</sup>) ion concentrations in water. Alkalinity affects taste (positively) and represents a water's capacity to absorb pH swings. Control of alkalinity helps control acid corrosion, avoids scaling, and ensures the effectiveness of disinfection processes. Excessive alkalinity promotes scaling. Water alkalinity is measured in milligrams of calcium carbonate equivalent per litre; the guideline range for drinking water is 20-200 mg/L. Lions Bay's alkalinity ranges from 3-7 mg/L, as would be expected from catchment geologies with no carbonate rocks. Taste and pH buffering would be improved by increased alkalinity and will be considered in 2025 for implementation as part of a pH control program in 2026.

Hardness is a measure of calcium and magnesium minerals dissolved in water. Hard water is not a health risk, but a nuisance because of mineral buildup and poor soap and detergent performance. Water hardness is measured in milligrams of calcium carbonate equivalent per litre; in general, water with less than 60 mg/L is considered soft, water with 60-120 mg/L moderately hard, and water with greater than 120 mg/L is hard. At 4-10 mg/L hardness, Lions Bay water is very soft, for the same reasons it is not alkaline. 2024 results were:

| 2024 ALKALINITY AND HARDNESS/mg/L CaCO <sub>3</sub> |               |               |               |               |  |  |  |  |  |
|-----------------------------------------------------|---------------|---------------|---------------|---------------|--|--|--|--|--|
| Sample date 👈                                       | 19 Mar        | . 2024        | 17 Sep.       | 2024          |  |  |  |  |  |
| Sample location, after flush 🛡                      | Alkalinity (> | Hardness      | Alkalinity (> | Hardness      |  |  |  |  |  |
|                                                     | 20 indicated) | (<60 is soft) | 20 indicated) | (<60 is soft) |  |  |  |  |  |
| Harvey raw water                                    | 3.3           | 3.93          | 6.0           | 6.62          |  |  |  |  |  |
| Magnesia raw water                                  | 4.7           | 8.79          | 5.2           | 19.60         |  |  |  |  |  |
| Harvey Tank (glass-lined steel)                     | 4.3           | 4.35          | 6.7           | 6.88          |  |  |  |  |  |
| Store/café                                          | 4.2           | 4.56          | 6.3           | 7.02          |  |  |  |  |  |
| Lions Bay Ave.                                      | 5.0           | 5.36          | 7.0           | 7.75          |  |  |  |  |  |
| Kelvin Grove                                        | 5.1           | 5.43          | 6.3           | 8.10          |  |  |  |  |  |
| Community Centre                                    | 5.0           | 5.03          | 6.1           | 7.15          |  |  |  |  |  |
| Magnesia Tank (concrete)                            | 4.7           | 10.30         | 5.4           | 18.70         |  |  |  |  |  |
| Brunswick Beach                                     | 4.7           | 5.13          | 5.6           | 18.90         |  |  |  |  |  |
| Lions Bay Beach Park                                | 4.1           | 4.76          | 6.2           | 7.22          |  |  |  |  |  |
|                                                     |               |               |               |               |  |  |  |  |  |
| Min.                                                | 3.3           | 3.93          | 5.2           | 6.62          |  |  |  |  |  |
| Max.                                                | 5.1           | 10.30         | 7.0           | 19.60         |  |  |  |  |  |
| Avg.                                                | 4.5           | 5.76          | 6.1           | 10.79         |  |  |  |  |  |

Langelier Saturation Index (LSI) is a measure of the balance between the corrosiveness and scale-forming nature of water, calculated from pH, bicarbonate and calcium ion concentrations, conductivity and temperature. An LSI under 0 is undersaturated with respect to calcium carbonate and tends to remove existing calcium carbonate protective coatings in pipelines and equipment, and indicates corrosive water. An LSI of zero is neutral and neither scale-forming nor scale-removing. An LSI over 0 is supersaturated with respect to calcium carbonate (CaCO<sub>3</sub>) and scaling may occur:

| LSI RANGE | CONSEQUENCE                              |  |  |  |
|-----------|------------------------------------------|--|--|--|
| < -0.5    | Corrosive                                |  |  |  |
| -0.5 – 0  | Slightly corrosive but non-scale forming |  |  |  |
| 0         | Balanced but pitting corrosion possible  |  |  |  |
| 0 – 0.5   | Slightly scale forming and corrosive     |  |  |  |
| > 0.5     | Scaling but non-corrosive                |  |  |  |

Using online calculators with parameters provided by the metals analyses, Lions Bay raw water LSI was:

| Analysis | Langelier Saturation Index |                |               |  |  |  |
|----------|----------------------------|----------------|---------------|--|--|--|
|          | Harvey Creek               | Magnesia Creek | Alberta Creek |  |  |  |
| Mar.     | -4.1                       | -3.5           | -             |  |  |  |
| Sep.     | -3.1                       | -2.7           | -             |  |  |  |
| Dec      | -                          | -              | -2.3          |  |  |  |

Lions Bay raw water is thus highly corrosive. As above, a partially budgeted project for pH and alkalinity control will be resurrected in 2025.

#### 5. DISTRIBUTION SYSTEM

After treatment, water flows to consumers through an EOCP Class II Water Distribution System (certification renewed in 2023, valid until November 16, 2028, see APPENDIX 1: CERTIFICATIONS on p.124). The system comprises:

- 3 potable water tanks, Harvey, Magnesia and Highway (see table below)
- 16.1 km of watermain of various sizes and materials from the 1960s to 2010
- 13 pressure reducing valve stations (3 updated, 10 due for replacement)
- 569 private property curb stop connections:
  - 26 multi-family units are covered by three curb stops
  - 35-student school and field
  - Three commercial accounts (café/store, marina, marine service centre)
  - A dozen municipal facilities and parks
- 72 fire hydrants
- 250 shutoff, blowoff, sampling and isolation valves.

#### **STORAGE TANKS**

| UNIT (NAMES REFER TO LEGACY       | MATERIAL                                                                 | DIMENSIONS                      | ACTUAL CAPACITY |         |         | YEAR |  |  |
|-----------------------------------|--------------------------------------------------------------------------|---------------------------------|-----------------|---------|---------|------|--|--|
| NOMINAL IMPERIAL GALLON           |                                                                          |                                 | L               | iG      | USG     |      |  |  |
| CAPACITIES)                       |                                                                          | CORRECTED FROM PREVIOUS REPORTS |                 |         |         |      |  |  |
| 500,000 Harvey Tank               | Glass-fused                                                              | 16.220 m ID,                    | 2,367,000       | 520,200 | 624,600 | 2019 |  |  |
|                                   | bolted steel                                                             | 11.446 m max.                   |                 |         |         |      |  |  |
|                                   |                                                                          | operating depth                 |                 |         |         |      |  |  |
| 100,000 Magnesia Tank             | Concrete                                                                 | 10.0 m X 10.0 m                 | 473,000         | 104,000 | 124,800 | 1997 |  |  |
|                                   |                                                                          | interior footprint,             |                 |         |         |      |  |  |
|                                   |                                                                          | 4.729 m max.                    |                 |         |         |      |  |  |
|                                   |                                                                          | operating depth                 |                 |         |         |      |  |  |
| 20,000 Highway Tank, obsoleted    | Concrete                                                                 | 5.87 m ID, 3.66 m               | 99,000          | 21,800  | 26,100  | 1959 |  |  |
| for fire reserve purposes in 2017 |                                                                          | operating depth                 |                 |         |         |      |  |  |
| with advent of Harvey Tank.       |                                                                          |                                 |                 |         |         |      |  |  |
| Slated for replacement by small   |                                                                          |                                 |                 |         |         |      |  |  |
| break-head tank or PRV.           |                                                                          |                                 |                 |         |         |      |  |  |
| 100,000 Oceanview Tank.           | Concrete                                                                 | 8.6 m ID, 7.3 m                 | 424,000         | 93,000  | 112,000 | 1984 |  |  |
| Obsoleted for potable service in  |                                                                          | operating depth.                |                 |         |         |      |  |  |
| 2017 with the advent of the       |                                                                          |                                 |                 |         |         |      |  |  |
| upsized Harvey Tank.              |                                                                          |                                 |                 |         |         |      |  |  |
| Repurposed in 2024 as a buffer    |                                                                          |                                 |                 |         |         |      |  |  |
| tank for Alberta Supply-          |                                                                          |                                 |                 |         |         |      |  |  |
| Augmentation Project's raw        |                                                                          |                                 |                 |         |         |      |  |  |
| water supply.                     |                                                                          |                                 |                 |         |         |      |  |  |
| 20,000 iG Phase IV Tank           | Fire reserve functions replaced by 2017 Harvey Tank upsizing. Demolished |                                 |                 |         |         |      |  |  |
| 25,000 iG Phase V Tank            | July 2024.                                                               |                                 |                 |         |         |      |  |  |
| 30,000 iG Brunswick Tank,         |                                                                          |                                 |                 |         |         |      |  |  |
| obsoleted mid-2000s               | Air gan to dia                                                           | tribution notwork               |                 |         |         |      |  |  |
| 35,000 iG Phase VI (Sunset) Tank, | All gap to dis                                                           | tribution network.              |                 |         |         |      |  |  |
| obsoleted late 1990s              |                                                                          |                                 |                 |         |         |      |  |  |

Inspection and cleaning of tanks occurs on a five-year cycle, using either a remotely operated vehicle (ROV) or a diver disinfected with chlorinated water. All drinking water tanks were inspected and cleaned in March 2022, next due in 2027<sup>10</sup>.

#### WATERMAINS

Watermains are primarily ductile iron, with some asbestos-cement (AC), cast iron and polyvinyl chloride (PVC) lines also in service:

| TREATED WATER MAINS (EXCLUDES LINES FROM INTAKES TO PLANTS) |       |            |  |  |
|-------------------------------------------------------------|-------|------------|--|--|
| Nomina                                                      | l ID  | Longth Inc |  |  |
| mm                                                          | inch  | Length/m   |  |  |
| 100                                                         | 4     | 602        |  |  |
| 150                                                         | 6     | 10,060     |  |  |
| 200                                                         | 8     | 4,430      |  |  |
| 250                                                         | 10    | 1,010      |  |  |
|                                                             | Total | 16,102     |  |  |

The municipality aims to flush distribution mains twice per year, which is accomplished by opening fire hydrants and blow off valves to briefly produce flowrates high enough to scour pipe walls. To not affect summer conservation efforts, flushing usually takes place March-April and October-November. Scouring and pressure fluctuations often cause additional breaks and leakage, so flushing is not engaged in lightly. The Spring flush was cancelled to sidestep service breaks that inevitably occur, in anticipation of a low-supply summer. The Fall flush took place Dec. 9-13.

See LEAKAGE on p.50 for discussion of the effect of leakage on consumption.

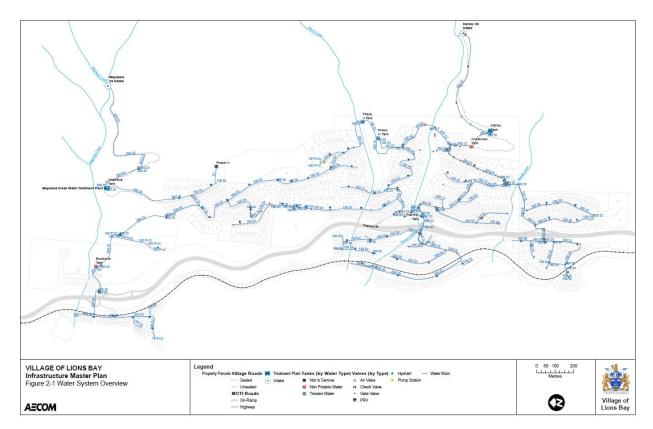
#### ASBESTOS FROM THE DISTRIBUTION MAINS

About 1200 m of Lions Bay's 16,100 m of watermains are 60-year-old asbestos-cement. Health Canada concludes there is no convincing evidence that asbestos ingested through drinking of water is harmful to health and has not established drinking water guidelines for asbestos. However, US EPA's enforceable maximum contaminant level (MCL) for asbestos is set at 7 million fibres per litre (MFL), based on findings that some people who drink water containing asbestos fibres well in excess of the MCL for many years may have an increased risk of developing benign intestinal polyps.

In an abundance of caution Lions Bay takes asbestos samples once per year in two pertinent locations. 2024 results are zero asbestos above an analytical sensitivity of 0.21 million fibers per liter:

<sup>&</sup>lt;sup>10</sup> The floor of the Harvey Tank was briefly ROV inspected in 2024 to determine whether apparent chlorine depletion in the tank was due to organic sediment build-up, which it proved not to be (rather, the issue was determined to be due to the chlorine sensor being located close to one of the five tank inlets measuring freshly treated water chlorine concentration, rather than the tank average).

| Asbestos analysis by transmission electron microscope to EPA Standard 100.2* |                                             |                   |  |  |
|------------------------------------------------------------------------------|---------------------------------------------|-------------------|--|--|
| Sample 19 Nov. 2024                                                          | Upper Bayview Rd.                           | Oceanview Rd.     |  |  |
| Analysis 22 Nov. 2024                                                        |                                             |                   |  |  |
| Analytical sensitivity (AS), million fibers per liter (MFL)**                | 0.21                                        | 0.21              |  |  |
| Total chrysotile, count                                                      | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| Total amosite, count                                                         | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| Total crocidolite, count                                                     | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| Total actinolite, count                                                      | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| Total tremolite, count                                                       | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| Total anthophyllite, count                                                   | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |
| TOTAL ASBESTOS, count                                                        | <as< th=""><th><as< th=""></as<></th></as<> | <as< th=""></as<> |  |  |


<sup>\*&</sup>quot;EPA 100.2" refers only to US EPA compliance drinking waters analyzed at >10,000x magnification, for asbestos fibers >10 $\mu$ m long only.

# PRESSURE REDUCING STATIONS, OTHER SPECIALISED VALVES

| LIO | LIONS BAY WATERMAINS VALVES. All valves manufactured by Cla-Val Co. unless stated otherwise. Pressure |                              |                |  |  |
|-----|-------------------------------------------------------------------------------------------------------|------------------------------|----------------|--|--|
|     | turndown capability to be installed under 2025-27 All-Zone All-Property Metering Project.             |                              |                |  |  |
| #   | VAULT/KIOSK                                                                                           | DOMESTIC FLOW                | FIREFLOW       |  |  |
| 1   | Upper Oceanview                                                                                       | <mark>4" PRV</mark> (2014)   | 8" PRV (1982)  |  |  |
| 2   | Oceanview Bend (down feed)                                                                            | <mark>4" PRV</mark> (2019)   | 6" PRV (1982)  |  |  |
| 6   | Oceanview Bend (cross feed)                                                                           | <mark>2" PRV</mark> (2015)   | 4" PRV (2015)  |  |  |
|     |                                                                                                       | 2" pressure relief (2015)    |                |  |  |
| 3.1 | Highway (feeds Isleview)                                                                              | <mark>2.5" PRV</mark> (2008) | 4" PRV (1985)  |  |  |
|     |                                                                                                       | 3" pressure relief (2020)    |                |  |  |
| 3.2 | Future Highway2 (feeds Lions Bay Ave., planned                                                        | <mark>2" PRV</mark> (2027)   | 4" PRV (2027)  |  |  |
|     | replacement of break head tank)                                                                       |                              |                |  |  |
| 3.0 | Highway Tank fillstation                                                                              | 4" altitude valve (2015)     | -              |  |  |
| 4   | Lower Upper Bayview                                                                                   | <mark>2" PRV</mark> (2018)   | 4" PRV (1982?) |  |  |
| 5   | North Bayview                                                                                         | <mark>2" PRV</mark> (2007)   | 4" PRV (2007?) |  |  |
|     |                                                                                                       | 2" pressure relief (non-     |                |  |  |
|     |                                                                                                       | ClaVal)                      |                |  |  |
| 7   | Tidewater                                                                                             | <mark>2" PRV</mark> (2015)   | 4" PRV (2015)  |  |  |
|     |                                                                                                       | 2" pressure relief (2015)    |                |  |  |
| 8   | Soundview                                                                                             | 2" PRV (2022)                | 6" PRV (2003)  |  |  |
| 9   | Brunswick Pit                                                                                         | 2" PRV (2015)                | 6" PRV (2003)  |  |  |
| 10  | Crystal Falls @ Brunswick Tank                                                                        | 2" PRV (2015)                | 6" PRV (2003)  |  |  |
| 11  | Brunswick at 99                                                                                       | <mark>2" PRV</mark> (2010)   | 6" PRV (2003)  |  |  |
|     |                                                                                                       | 2" pressure relief (2008)    |                |  |  |
| 12  | Mag pre-fillstation                                                                                   | 2" PRV (2015)                | 6" PRV (2015)  |  |  |
| 13  | School                                                                                                | <mark>4" PRV</mark> (2021)   | 8" PRV (2021)  |  |  |
| 14  | Upper Upper Bayview @ Alberta                                                                         | <mark>4" PRV</mark> (2021)   | 8" PRV (2021)  |  |  |
| W   | Mountain flow control valve (conceived to add                                                         | 6" gate valve (2021)         | -              |  |  |
|     | Harvey supply to augment fire service at school;                                                      |                              |                |  |  |
|     | now likely unnecessary)                                                                               |                              |                |  |  |
| Χ   | Oceanview Tank at ASAP pumphouse fillstation                                                          | 6" altitude valve (TBC)      | -              |  |  |

<sup>\*\*</sup>US EPA indicates an analytical sensitivity less than 0.2 MFL is desired for drinking water, and that a sufficient volume is analyzed to yield the same. However, waters containing excessive solids may require filtration of volumes too low to achieve the desired AS. Lions Bay's prior year samples had seen AS above 0.4 MFL, so for the 2024 sample, the lab was requested to achieve this sensitivity by analysing sufficient volumes of sample, which at an AS of 0.21 was accomplished, or close enough.

| Υ | Harvey Plant fillstation (8" line from intake and | 4" PRV (2012)          | 6" PRV (2009)         |
|---|---------------------------------------------------|------------------------|-----------------------|
|   | ASAP pump feed)                                   |                        |                       |
| Z | Mag Plant fillstation (8" line from PRV-12)       | Upstream & downstream  | Upstream & downstream |
|   |                                                   | 2" PRVs (2009)         | 6" PRVs (2009)        |
|   |                                                   | 2" blowoff (2008)      |                       |
|   |                                                   | 3" in-plant PRV (2009) |                       |



## FILTRATION EXEMPTION

The system operates under Vancouver Coastal Health filtration exemption. *Drinking Water Microbial Treatment Objectives for Surface Water Supplies in BC* recommends filtration and one form of disinfection for drinking water treatment, but provides for filtration exemption under four conditions:

## **CONDITION 1: ADEQUATE DISINFECTION**

"Provide overall inactivation, using a minimum of two disinfection processes, of 4-log reduction of viruses and 3-log reduction of Cryptosporidium and Giardia."

The municipality achieves this condition by utilising UV as primary and chlorine as secondary disinfection, discussed in detail in PRIMARY TREATMENT: UV DISINFECTION and SECONDARY TREATMENT: CHLORINE on p.10.

Status at end of 2024: condition met.

# **CONDITION 2: CLEAN SUPPLY**

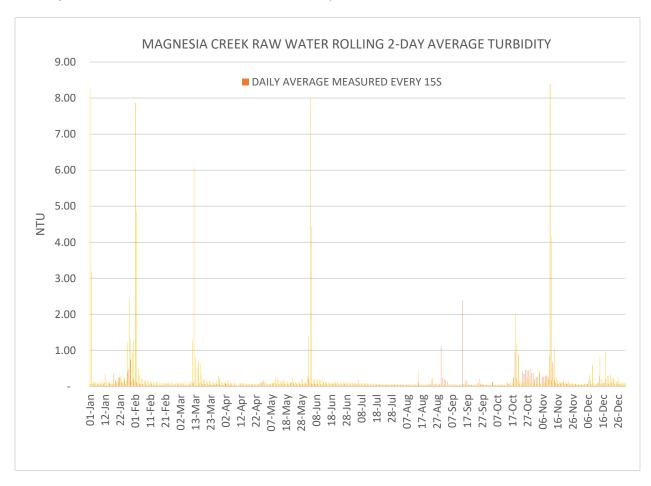
"E. coli in raw water not to exceed 20 colony-forming units per 100 ml...in at least 90% of weekly samples from the previous six months."

In 2024 this criterion was met: *E. coli* in raw water did not exceed 20 colony-forming units per 100 mL in 51 of 52 (98%) of samples for Harvey Creek, 50 of 52 (96%) of samples for Magnesia Creek, and 10 of 10 (100%) of samples for Alberta Creek:

| Raw water |            |          |           |         |         |            |         |
|-----------|------------|----------|-----------|---------|---------|------------|---------|
|           |            | Harvey ( | Ck Raw    | Mag Cl  | Raw     | Alberta Cl | k Raw   |
| 2024      | Days since | TC       | E. coli   | TC      | E. coli | TC         | E. coli |
|           |            | E. co    | oli, colo | ny-forn | ning u  | nits/100 n | าไ      |
| 02-Jan    |            | 27.5     | ND        | N/A     | N/A     | -          | -       |
| 08-Jan    | 6          | 21.1     | ND        | 16.0    | ND      | -          | -       |
| 15-Jan    | 7          | 21.6     | ND        | 4.1     | ND      | -          | -       |
| 22-Jan    | 7          | 21.3     | 2.0       | 81.3    | 2.0     | -          | -       |
| 29-Jan    | 7          | 27.9     | ND        | 12.0    | ND      | -          | -       |
| 05-Feb    | 7          | 14.8     | ND        | 7.4     | ND      | -          | -       |
| 12-Feb    | 7          | 24.6     | ND        | 21.6    | ND      | -          | -       |
| 20-Feb    | 8          | 11.9     | ND        | 10.8    | ND      | -          | -       |
| 26-Feb    | 6          | 24.6     | ND        | 11.0    | ND      | -          | -       |
| 04-Mar    | 7          | 13.5     | ND        | N/A     | N/A     | -          | _       |
| 11-Mar    | 7          | 36.4     | ND        | 7.3     | ND      | -          | -       |
| 18-Mar    | 7          | 9.8      | ND        | 15.8    | ND      | -          | _       |
| 25-Mar    | 7          | 12.2     | ND        | 12.1    | ND      | ı          | -       |
| 02-Apr    | 8          | 17.5     | ND        | 10.9    | ND      | -          | _       |
| 08-Apr    | 6          | 18.7     | ND        | 9.8     | ND      | -          | -       |
| 15-Apr    | 7          | 14.8     | ND        | 21.8    | ND      | -          | _       |
| 22-Apr    | 7          | 20.1     | ND        | 16.0    | ND      | -          | _       |
| 29-Apr    | 7          | 14.8     | 1.0       | 11.0    | ND      | -          | _       |
| 06-May    | 7          | 17.1     | ND        | 18.5    | ND      | -          | -       |
| 13-May    | 7          | 14.5     | ND        | 7.4     | ND      | -          | _       |
| 21-May    | 8          | 42.6     | ND        | 14.0    | ND      | -          | _       |
| 27-May    | 6          | 21.6     | ND        | 6.3     | ND      | -          | _       |
| 03-Jun    | 7          | 51.2     | ND        | 253.9   | 6.3     | -          | _       |
| 10-Jun    | 7          | N/A      | N/A       | N/A     | N/A     | -          | _       |
| 17-Jun    | 7          | 27.5     | ND        | 18.5    | ND      | -          | _       |
| 24-Jun    | 7          | 59.8     | ND        | 20.1    | ND      | -          | _       |
| 02-Jul    | 8          | 93.1     | ND        | 21.6    | ND      | -          | -       |
| 08-Jul    | 6          | 99.1     | 1.0       | 44.1    | ND      | -          | _       |
| 15-Jul    | 7          | 115.3    | ND        | 70.8    | ND      | -          | -       |
| 22-Jul    | 7          | 209.8    | 2.0       | 187.2   | 1.0     | -          | _       |

| Raw water |            |          |           |         |         |            |         |
|-----------|------------|----------|-----------|---------|---------|------------|---------|
|           |            | Harvey ( | Ck Raw    | Mag Cl  | Raw     | Alberta Cl | k Raw   |
| 2024      | Days since | TC       | E. coli   | TC      | E. coli | TC         | E. coli |
|           |            | E. co    | oli, colo | ny-forn | ning u  | nits/100 n | η       |
| 29-Jul    | 7          | 488.4    | 2.0       | 613.1   | 3.1     | -          | -       |
| 06-Aug    | 8          | 261.3    | 2.0       | 86.0    | ND      | -          | -       |
| 12-Aug    | 6          | 410.6    | ND        | 155.3   | ND      | -          | -       |
| 19-Aug    | 7          | 275.5    | 1.0       | 125.0   | ND      | -          | -       |
| 26-Aug    | 7          | 260.3    | 2.0       | 290.9   | 2.0     | 272.3      | 5.2     |
| 03-Sep    | 8          | 142.1    | ND        | 135.4   | ND      | -          | -       |
| 09-Sep    | 6          | 115.3    | ND        | 235.9   | ND      | 126.6      | ND      |
| 16-Sep    | 7          | 95.9     | 2.0       | 98.8    | ND      | 108.6      | ND      |
| 23-Sep    | 7          | 123.6    | 1.0       | 109.2   | 1.0     | 71.7       | ND      |
| 01-Oct    | 8          | 53.7     | 1.0       | RM      | RM      | 101.7      | ND      |
| 07-Oct    | 6          | 56.1     | ND        | 46.4    | ND      | 156.5      | ND      |
| 15-Oct    | 8          | 83.3     | ND        | 33.1    | ND      | 270.0      | 1.0     |
| 21-Oct    | 6          | 128.1    | 2.0       | 547.5   | 25.9    | 198.9      | ND      |
| 28-Oct    | 7          | 98.8     | ND        | 46.5    | ND      | 198.8      | ND      |
| 04-Nov    | 7          | 1413.6   | 146.7     | 153.9   | 20.1    | -          | -       |
| 12-Nov    | 8          | 48.7     | 2.0       | 920.8   | 15.8    | -          | -       |
| 18-Nov    | 6          | 41.4     | 1.0       | 21.1    | ND      | ı          | -       |
| 25-Nov    | 7          | 35.5     | ND        | 24.3    | ND      | -          | -       |
| 02-Dec    | 7          | 22.8     | 1.0       | 17.5    | ND      | -          | -       |
| 09-Dec    | 7          | 20.1     | ND        | 19.5    | 1.0     | -          | -       |
| 16-Dec    | 7          | 23.1     | ND        | 18.7    | ND      | ı          | -       |
| 23-Dec    | 7          | LC       | LC        | LC      | LC      | -          | -       |
|           |            |          |           |         |         |            |         |
| COL       | JNT        | 52       | 52        | 52      | 52      | 10         | 10      |
| N         | ΛIN        | 9.8      | ND        | 4.1     | ND      | 71.7       | ND      |
| N         | 1AX        | 1413.6   | 146.7     | 920.8   | 25.9    | 272.3      | 5.2     |
| >20 E.    | coli       | N/A      | 1         | N/A     | 2       | N/A        | 0       |

ND = Non-detectable RM = Results Missing From Laboratory LC = Lab closed


#### Status in 2024: condition met.

# **CONDITION 3: LOW TURBIDITY**

"[Maintain] average daily turbidity levels measured at equal intervals (at [most] every four hours) immediately before the disinfectant is applied...around 1 NTU, but...not exceed[ing] 5 NTU for more than two days in a 12-month period."

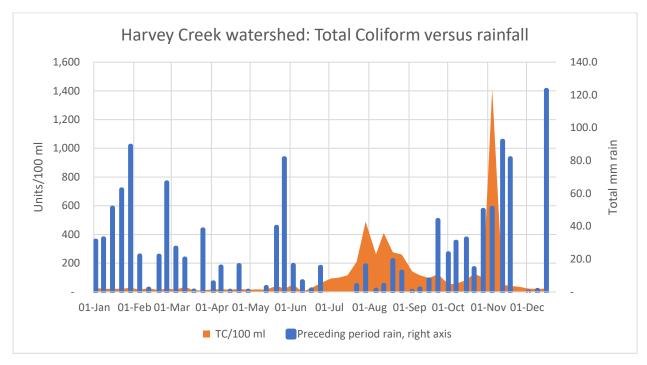
As discussed in TURBIDITY ANALYSIS on p.18 above, no daily grab sample turbidity readings reached 5

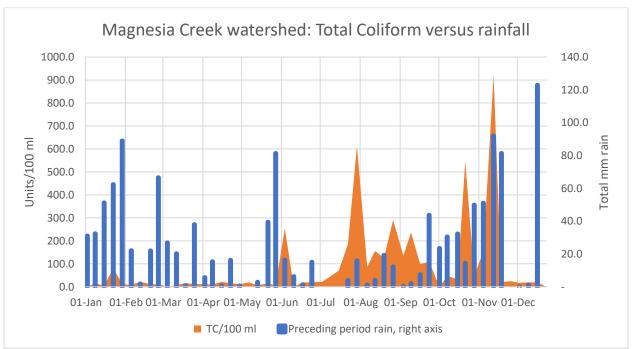
NTU, but to satisfy the 4-hour criterion of the Condition, 2024's 3,020,455 readings taken every 15 seconds by the turbidity meters on the plants' incoming raw water were summarised programmatically (see Appendix 8 on p.116). There were **no days in which the rolling two-day average of such readings exceeded 5 NTU for Harvey Creek, but there were five such instances for Magnesia Creek for one or two days each** (no instances were more than two days):



As identified in 2023, both plants' turbidity meters' upper limits are 10 NTU and do not record higher values. However, for hourly periods in which the reading is at 10 NTU, adjacent hours are almost always less than 10, so out-of-range periods are short. The ability of the meters to report full NTU ranges will be investigated in 2025.

Magnesia Creek's geomorphology is troublesome and being addressed as described in WORK PROGRAM on p.51.


#### Status in 2024: open.


### CONDITION 4: CONTROL FECAL COLIFORM IN THE WATERSHEDS

"[Maintain] A watershed control program...that minimizes the potential for fecal contamination in the source water."

The municipality's <u>Source Water Protection Plan</u> outlines ongoing measures and programs to control

and protect the watersheds, including from fecal contamination. 2024-specific Total Coliform results are:





TC spikes in different watersheds in the same week in November are notable and assumed to be due to the first significant rain, which fell in both watersheds that week, and washed the preceding three months of detritus into the creek. Seemingly independent of rain, TC readings also climb in summer due to rising temperature.

Status in 2024: open.

# 6. OPERATORS

The municipality's annual drinking water work program is driven by regulatory monitoring and reporting requirements. The Environmental Operators Certification Program (EOCP) classifies water supply and distribution systems to determine operator training requirements:

- Each system is required to have at least one Chief Operator certified to the classification level of the system.
- Additionally, any person whose actions may affect the operation of a water system requires certification.

Operators must earn continuing education units to remain certified.

EOCP classifies Lions Bay's water treatment system as Class 1, and distribution system as Level 2 (certificates p.50). In 2024, EOCP-certified personnel were:

| STAFF MEMBER | JOB CLASSIFICATION ON DEC. 31 | RELEVANT EOCP CERTIFICATIONS         |
|--------------|-------------------------------|--------------------------------------|
| AU           | Treatment Plant Operator      | Water Treatment Plant Operator 1     |
|              |                               | Water Distribution System Operator 2 |
| AY           | Operations Supervisor         | Water Treatment Plant Operator 1     |
|              |                               | Water Distribution System Operator 2 |
| GS           | Operator 2 from March         | Small Water Systems Operator         |
|              |                               | Water Treatment Plant Operator 1     |

# 7. ABNORMAL OPERATION PROTOCOLS

VOLB = Village of Lions Bay Public Works Manager (or designee)

VCH = Vancouver Coastal Health

| SITUATION                                     | NOTIFYING<br>AGENCY | AGENCY<br>NOTIFIED | NOTIFICATION TIME FRAME |
|-----------------------------------------------|---------------------|--------------------|-------------------------|
| E. coli positive for any treated water sample | VCH Labs            | VOLB & VCH         | Immediate               |

VOLB and VCH are notified immediately by VCH Labs. Any later samples from the same station will be immediately examined by the laboratory. The chlorine residual noted on the field sheet will be reviewed by VCH Labs and compared to lab analysis test results to determine if there is any local decrease of chlorine residual. Immediate collection and test of a repeat sample, where possible both upstream and downstream of the positive sample location. VCH and VOLB determine the need for a Boil Water Advisory (BWA) to be issued by VCH. VCH Lab will test subsequent samples. Once consecutive negative sample results are returned, VOLB will liaise again with VCH and determine whether the BWA can be lifted.

| Total coliform >10/100 ml in raw water AND    | VCH Labs  | VCH | Immediate |
|-----------------------------------------------|-----------|-----|-----------|
| low chlorine residual in treated water in any | (for TC), |     |           |
| sample station                                | VOLB (for |     |           |
|                                               | chlorine) |     |           |

VOLB and VCH will be notified immediately by VCH Labs of a TC reading over 10, but it is unlikely that the low chlorine residual co-condition would apply, since the municipality maintains at least 0.2 mg/L throughout the network, with response times to dose changes ranging from minutes close to source, to over 24 hours at the far ends of the network. Nevertheless, any available samples from the same sampling station will be immediately examined by the laboratory, and a repeat sample will be collected, where possible both upstream and downstream of the positive sample location. All other station's TC results will be compared, and VCH and VOLB will liaise and determine the need for a Boil Water Advisory (BWA) to be issued by VCH. Where possible the distribution network will be reconfigured to shut out the creek producing the high TC until offline samples are clear, after which VOLB will again liaise with VCH on lifting the BWA.

| Chemical contamination VOL | _B VCH | Immediate |
|----------------------------|--------|-----------|
|----------------------------|--------|-----------|

Chemical contaminants may include nitrates and nitrites, salts, pesticides, metals and toxins. While it is recognised that with only semi-annual sampling, timely detection may not be possible, when they are, VCH will immediately be notified, and steps will commence to isolate the contaminated area. The level of contamination will be determined through sampling and analysis, and public health risk factors will be determined. If necessary, a public advisory will be issued and carried out by VOLB under the guidance of VCH. Once the contamination is remedied and consecutive negative sample results are returned from VCH Lab, VOLB will again liaise with VCH and determine whether the public advisory can be lifted.

#### Turbidity events >5 NTU VOLB VCH Immediate

UV treatment effectiveness diminishes with increased turbidity due to UV absorbance and reflection and a correspondingly low UV transmittance (UVT) rate. The system automatically increases UV lamp intensity to counter lower UVT. Once the UV dose drops below a minimum of 26.25 mJ/cm², the UV reactors stop flow and alert on-call VOLB staff. Long before 5 NTU is reached, high turbidity readings are flagged, with affected sections of the distribution system field-checked and flushed if deemed advisable by VOLB. For turbidity > 5 NTU, microbiological testing is increased at all sampling locations; chlorine residual sampling and testing is likewise increased and VOLB contacts VCH, which may issue a Boil Water Advisory.

| Disinfection failures/continued loss of | VOLB | VCH | Immediate for continued loss |
|-----------------------------------------|------|-----|------------------------------|
| residual                                |      |     | of residual                  |

If a daily chlorine residual anywhere in the system is below 0.2 mg/L, operators increase dosage at the affected plant, and depending on conditions may dump stored water from the tank to bring in higher chlorine.

| SITUATION | NOTIFYING | AGENCY   | NOTIFICATION TIME FRAME |
|-----------|-----------|----------|-------------------------|
|           | AGENCY    | NOTIFIED |                         |

Should chlorine residual remain below 0.2 mg/L for 24 hours, chlorine will be added directly to the tank and chlorine residuals will be checked frequently throughout the system, while investigating the root cause. VOLB will contact VCH, who may issue a Boil Water Advisory if continued loss of residual is observed.

Loss of distribution pressure due to high demand VOLB VCH Immediate

In the event of adverse pressure loss due to high demand, VOLB will adjust the distribution system to supplement pressure in the affected area. VCH will be notified.

Water main breaks VOLB VCH Immediate

In the event of a water main break where chemical or microbiological contamination of the system is suspected, VOLB will adjust the system to isolate the contaminated section and consult with VCH regarding further actions; all water quality complaints from the public will be immediately and thoroughly investigated for potential contamination. Water samples will be taken from the vicinity and downstream of the break if possible and tested for the suspected contamination. The same procedures as noted under *E. coli* above will be implemented if required.

| Low supply due to drought or other causes | VOLB | EMCR & VCH | Information only; as drought |
|-------------------------------------------|------|------------|------------------------------|
|                                           |      |            | situation progresses         |

The control system alarms if supply pressure at a plant decreases rapidly, and staff ascertain and address the root cause of the problem (i.e. whether the decrease is due to an intake blockage or a break in the intake supply line). Low supply results in conservation measures being instituted. Level 1 of the municipality's Outdoor Water Use Bylaw entails only restricting lawn watering to three days a week, and is set around June 1 every year, as much for awareness as conservation. Level 2 is utilized to further reduce outdoor use of water, and Level 3 is reserved for serious supply shortage. In late 2023, in anticipation of unprecedented supply shortage in 2024, further conservation considerations were mooted to Council with no decision taken:

CODE RED: 3-day-average supply within 125% of demand.

- Town Hall and information campaign
- Activate Outdoor Water Use Bylaw Level 3 with stringent enforcement, including drone overflight (subject to Federal regulations) and zero-tolerance ticketing for offenses.
- Building Inspector lock out of private irrigation systems and decommissioning of indoor and outdoor water features.

CODE ORANGE: 3-day-average supply within 110% of demand.

- Town Hall and information campaign
- Subject to prospects for worthwhile rain, declaration of a state local emergency to allow shutoff of suspect service connections (known faulty services can already be shut off by bylaw as noted above)
- Because the critical requirements for a residence to remain habitable are flushing toilets and
  dishwashing, commence sourcing curbside water barrels labelled "NON-POTABLE WATER: NOT FOR
  HUMAN OR ANIMAL CONSUMPTION. Free to residents for indoor use only: bathing, cleaning, toilet
  tanks, dishwashing (use warm water, then sanitise for 30 s in 5 mL of bleach per liter of water and air
  dry)."
- Commence sourcing bottled drinking and cooking water
- Mutual aid negotiations, including but not limited to shower facilities at West Vancouver's Gleneagles
  community centre, mobile laundromat trailer (filtered non-potable water), nearby fire departments,
  firefighting water trailers.

| SITUATION | NOTIFYING | AGENCY   | NOTIFICATION TIME FRAME |
|-----------|-----------|----------|-------------------------|
|           | AGENCY    | NOTIFIED |                         |

#### CODE WHITE: supply less than demand.

- Declare State of Local Emergency
- Town Hall and information campaign
- In sufficient time for no user to receive water that has been exposed to dried mains, shut off all street mains and 550+ service curb stops
- With hydrants no longer operational, institute previously recruited citizen/contractor firewatch
- Place remaining curbside barrels and commence roving tanker top-up service
- Activate mutual aid agreements
- When creek supply reliably returns, in consultation with VCH flush and hyper-chlorinate tanks and mains (7 14 days)
- Reopen curb stops under Boil Water Order, then Boil Water Advisory.

VOLB will liaise with EMCR and VCH for a coordinated response as events unfold.

# 8. STRATEGIC ISSUES

## **SUPPLY**

Flow in Lions Bay's three raw water source creeks is produced by:

- Rainfall
- Groundwater entering the channel, influenced by when groundwater was last fully replenished
- Snowmelt, subject to rain-on-snow, insolation (sunshine), wind and cloud cover.

Current regional climate projections call for warmer winters and longer hotter summers, with precipitation similar to today, but occurring more intensely as rain rather than snow. With no raw water storage, Lions Bay relies entirely on water being in the creeks as needed. For much of the year, creek flows exceed the capacity of their respective treatment plants. In August and September however, creekflows dwindle, other than in periods of sporadic rain. In some years, daytime consumption has been higher than supply, and the tank levels only start rising overnight. In recent late summers supply has been as low as 300,000 GPD in Harvey Ck. and 190,000 GPD in Magnesia Ck. The Alberta Supply-Augmentation Project (ASAP) system went into operation on Aug. 15 after obtaining a VCH Construction Permit, for pumping up to 50 GPM (72,000 GPD) to the Harvey Treatment Plant if and when Harvey Creek supply needs augmentation. In summer staff watch rainfall predictions and manage fill levels to use as much of the creeks as possible.

In 2017 the municipality commenced working with the Hydrotechnical Engineering group at UBC's Civil Engineering Department, to jointly collect data from the watersheds to model the relationship between snowpack, weather and supply to make operating decisions:

- In the short term by knowing what creek supply will do until the next rainfall event, to know what conservation level to set;
- In the long term by knowing when to begin considering supply alternatives: wells, desalination—in 2018 the municipality acquired the last remaining undeveloped waterfront land in the community to hold in reserve for a desal plant site—or a pipeline to the MVWD.

Little of use to Lions Bay was forthcoming from this effort and it was wound down in 2024, with funds redirected to implementing direct measurement of creek supply<sup>11</sup>.

#### PROBLEMATIC INTAKES

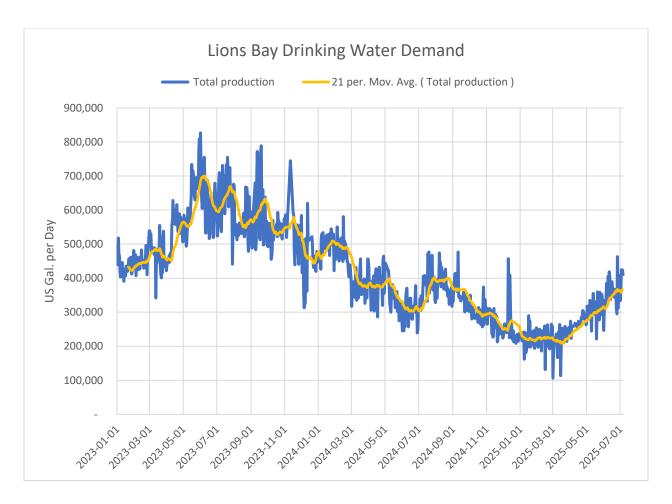
Lions Bay's water catchments are mountainous and geotechnically unstable—landslides into the creeks occur frequently. Access to the intakes is on narrow gravel roads subject to rock and tree fall, and on which safety protocols restrict access whenever rainfall parameters are exceeded, just when decreased flow or increased turbidity need to be investigated. The watersheds are heavily forested with deciduous and conifer trees producing copious leaves and needles which build up on intake screens,

<sup>&</sup>lt;sup>11</sup> Using pressure transducers in the whole flow pools above the intakes to measure pool depth. Pool depth directly correlates to creek flow, determine from custom rating curves produced from salt-dosing proportional measurements just downstream, and compared to plant throughput in periods when they take the entire production of the creek.

occasionally requiring clearing twice a day. Large rocks (over 0.5 m) move down the creeks during heavy rain and fill the intake weirs. Medium rocks (10 - 50 cm) block the intake grates. Small rocks (1 - 10 cm) fill the settling chambers.

A 2017 design to screen small solids at the Magnesia weir was a failure; in late 2023 engineers were engaged to consider a better approach, perhaps an open raceway/riffle design to float off vegetation and to drop out medium and small rocks, not requiring confined-space safe work protocols to clear, with a powered gate valve to close off feed when not in use to prevent debris buildup on the grate, the so-called WHIRL (Weir Height and Inclination ReaLign) project. A better-conceived 2018 upgrade to the profile of the Harvey weir allows it to self-clear blockages at the intake grate.

See 2024 PROJECTSon p.51 for further information.


#### **EXCESSIVE DEMAND**

#### **LEAKAGE**

As identified in the 2022 and 2023 Annual Reports, water demand had been increasing since 2015 at an average rate of 14% a year, reaching an all-time high in early summer 2023 of 810,000 GPD. Lions Bay had not significantly changed population in the period, and there is no reason to believe residents use water differently. Instead, increasing demand is due to accelerating leakage, primarily in the service lines connecting properties to the mains. Service lines run through front and side yards and are damaged by tree roots: what was a 10 cm sapling when a line was installed 50 years ago is today a 60 cm tree pushing rocky backfill into the line. Municipal mains and their service lines to the curb stop mostly run in roads and boulevards, where there are no trees. Leaks here are fewer. Private lines were often installed in a hurry by private developers, and due to Lions Bay's major development phases, often in the polybutylene used extensively from the late 1970s to the late 1990s before it was banned by the National Plumbing Code in 1997 due to inevitable failure in service.

Through a crash program starting in Sep. 2023, the municipality in 2024 located and addressed 8 public-side and 18 private-side leaks (including one alone of 110,000 GPD, undetected on the surface, and with no noticeable pressure drop). Demand went from an average 618,600 GPD in 2023 to 359,100 GPD in 2024, a 42 percent decrease:

| Year | Consumption/m <sup>3</sup> | Change | GPD     | Census population | L/capita/day |
|------|----------------------------|--------|---------|-------------------|--------------|
| 2016 | 351,318                    | -      | 253,600 |                   | 722          |
| 2017 | 472,527                    | 35%    | 341,100 |                   | 970          |
| 2018 | 533,000                    | 13%    | 384,800 | 1334              | 1095         |
| 2019 | 508,000                    | -5%    | 366,700 |                   | 1043         |
| 2020 | 623,000                    | 23%    | 449,700 |                   | 1279         |
| 2021 | 612,000                    | -2%    | 441,800 |                   | 1206         |
| 2022 | 699,000                    | 14%    | 504,600 | 1390              | 1378         |
| 2023 | 856,939                    | 23%    | 618,600 | 1220              | 1689         |
| 2024 | 497,400                    | -42%   | 359,100 |                   | 978          |



#### **METERING**

359,100 GPD is still double the per capita consumptions of comparable communities:

| COMMUNITY                                 | Litres per capita per day (L/c/d)             |
|-------------------------------------------|-----------------------------------------------|
| Lions Bay, 2024 average                   | 978                                           |
| Lions Bay, early 2025 lows of 200,000 GPD | 545 (still significantly higher than regional |
|                                           | averages)                                     |
| West Vancouver                            | 493 <sup>12</sup>                             |
| Anmore                                    | 356                                           |
| North Van District                        | 510                                           |

The municipality believes that the only sustainable means to control demand is meter all use, both to immediately find unintended use fast, and in future to incentivise conservation by charging for water used. In early 2025 the municipality was awarded a \$3.94 mil. grant under the provincial Water Metering Pilot Program for 100 percent funding of universal metering of all 580 properties in Lions Bay (plus watermain zone metering and nighttime pressure turndown). Metering will be implemented from late 2025 through March 2027.

<sup>&</sup>lt;sup>12</sup> Other community data sourced from latest (2023) GVWD report

#### **OUTDOOR WATER USE**

Outdoor Water Use Bylaw No. 484, 2015 restricts residential, commercial, and public water uses during low supply periods:

## **OUTDOOR WATER USE CONSERVATION LEVELS 1 TO 3**



Unless a Notice is published by the Municipality that amends the period of Level 1 or is replaced by Level 2 or 3 as required.

This document is an representation of the conditions within the Village of Lions Bay Outdoor Water Use Bylaw No. 484, 2015. All persons making use of this document should be aware that the original bylaws takes precedence. Bylaws can be viewed on the Village of Lions Bay website at www.lionsbay.ca.

In 2024, Conservation Level 1 was set on June 1 and removed October 25. Levels 2 and 3 were not required despite low rainfall in late summer, and the main rain only returning in mid October. As laid out above, climate change may affect the community's long term water supply, and the municipality is taking long term steps to ensure that demand does not outstrip it.

#### LIMITED CAPITAL

As a small residential community with a small tax base, Lions Bay's infrastructure spending shortfall is growing. While an Infrastructure Levy has been collected since 2019, capital spending still requires federal and provincial grant help. Outstanding water capital projects include:

 Replacing 1065 meters of 1960s era cast iron and asbestos-cement pipe, the Centre-Upper Bayview-Bayview Place, or CUBB Project. Three grant applications for this \$3-4 mil. project have been unsuccessful, and for the 2025 budget year Council has funded a \$1.3 mil. subset of the project from reserves, now in the design phase for groundbreaking early in 2026.

<sup>\*\*</sup> Newly planted lawns may be watered outside allowed times with a municipal permit displayed.

Distribution system modelling undertaken for CUBB indicate that replacement of 795 meters of water main at north Bayview Road, the so-called DWIP (Drainage & Water Infrastructure Project) can be superseded by instead delivering the firefighting flows and volumes required for Lions Bay School via CUBB, saving \$2-4 mil. permanently. See LOOKING AHEAD below.

- Pressure reducing valve stations that are not compliant with confined-space worker safety requirements, and that have outlived twice the best practice replacement cycles, at a cost of \$300,000-500,000 each.
- The 20,000 iG Highway Tank was obsoleted for fire reserve volume in 2017 with the advent of the upsized Harvey Tank. Slated for future replacement with a PRV.
- Filtration, which based on unstable turbidity results in 2024 is now being long-range planned, for implementation at the Harvey Plant.
- The problematic Magnesia Intake, as discussed above.
- pH adjustment to meet *Guidelines for Canadian Drinking Water Quality*, and as discussed above.

# WORK PROGRAM

The municipality's Core Service Level Review (available at www.lionsbay.ca) details the routine tasks and staff resources involved in operating and maintaining the water system. All core maintenance was completed in 2024, other than the Spring watermain flush as discussed above.

#### PLANT LOGS

|        | Harvey Plant 2024 |      |                                                    |  |  |  |  |  |
|--------|-------------------|------|----------------------------------------------------|--|--|--|--|--|
| From   | То                | Days | Notes                                              |  |  |  |  |  |
| 1 Nov. | 4 Nov.            | 4    | High turbidity, and sand in the reactors on Nov. 4 |  |  |  |  |  |

|         | Magnesia Plant 2024 |      |                                                                     |  |  |  |  |  |  |
|---------|---------------------|------|---------------------------------------------------------------------|--|--|--|--|--|--|
| From    | То                  | Days | Notes                                                               |  |  |  |  |  |  |
| 1 Jan.  | 7 Jan.              | 7    | Intake clogged w. vegetation. System fed from Harvey Plant.         |  |  |  |  |  |  |
| 22 Jan  | 22 Jan              | 1    | Comms fault                                                         |  |  |  |  |  |  |
| 29 Jan. | 22 Feb.             | 3    | Intake clogged. System fed from Harvey Plant.                       |  |  |  |  |  |  |
| 1 Mar.  | 29 Apr.             | 60   | Entire system fed from Harvey Plant to allow use of Harvey network  |  |  |  |  |  |  |
|         |                     |      | flowmeters to deduce overnight leakage rates. Magnesia Plant on lo- |  |  |  |  |  |  |
|         |                     |      | flow bypass to maintain chlorine residual.                          |  |  |  |  |  |  |
| 6 Jun.  | 19 Jun.             | 17   | Intake blocked by rocks. Entire network fed from Harvey Plant.      |  |  |  |  |  |  |
| 21 Oct. | 24 Oct.             | 4    | Intake blocked. System fed from Harvey Plant.                       |  |  |  |  |  |  |
| 11 Nov. | 20 Nov.             | 9    | Intake blocked. System fed from Harvey Plant.                       |  |  |  |  |  |  |

#### 2024 PROJECTS

- The Alberta Supply-Augmentation Project (ASAP) system went into operation on Aug. 15. It gravity feeds up to 110 GPM from a refurbished 1960s-era weir on Alberta Creek weir a 900 m 3" surface pipeline to the 100,000 iG Oceanview tank, for pumping at 50 GPM to the Harvey Treatment Plant if and when Harvey Creek supply needs augmentation. In 2024, other than for testing and commissioning purposes, no Alberta supply was required 13.
- Significant SCADA control system upgrades were delivered:
  - Online Cl monitoring at KG Control Room mains endpoint, with a view to providing operators confidence to reduce chlorine dosing
  - Replaced copper data circuits with fibreoptic at Office, Yard, Harvey Plant, Magnesia Plant, WWTP (0 install cost and net savings monthly).
  - o Wi-Fi; cameras at Oceanview pumphouse, Mag Plant, Harvey Plant
  - Replace 6-channel voice alarm dialler with cloud alarm platform to provide unlimited alarm inputs delivered by text, email and voice, obsoleting the PLC panel at the Works Yard

<sup>&</sup>lt;sup>13</sup> Project was delivered on time at a capital cost of \$680,000 (\$721,000 budgeted). It comprised approach grading, a metering weir, reuse of the legacy penstock/shutoff valve/catchbasin, new 4" flush valves and a Y-strainer, an automatic runaway flow shutoff station, cable crossing of Harvey Creek, a repurposed Oceanview fillstation and tank as buffer storage, and reconfiguration of available power to provide a SCADA-controlled pump station. The Harvey Plant fillstation was modified to accept a new supply stream. Security fencing and signage was provided. The disused Phase IV and V treated water tanks were demolished while heavy equipment was available.

- Replaced failed fireflow Y-strainer at PRV-1
- Pressure transducers were installed in the total-flow pools upstream of the Magnesia and Harvey weirs to correlate to the streams' rating curves, in order to provide direct measurement of available creek supply. These installations were connected to the municipality's Flowworks logging tool in late 2024.
- A and B services on all 72 fire hydrants using a contractor.

## 2024 OPERATING CHANGES

- Tank fill bands were widened to reduce lamp cycles to four per day to comply with UV reactor warrantees.
- Tank top fill height was lowered to store less water to reduce water age while maintaining required fire reserve and providing chlorine CT.
- Chlorine injection was reduced as discussed above.
- The Harvey Plant flowmeter was removed and inspected in an attempt to explain inconsistencies in flowrates calculated from tank height changes. The hydraulic cross section of the meter was unaffected by any sort of deposit, and the conductivity electrodes were clean (the meter's conductivity threshold is 20 micro siemens per centimeter ( $\mu$ S/cm), below which the signal to noise ratio is low. Lions Bay water was found from additional tests run as part of the 2024 metals analyses to have very low conductivities from 13 to 31  $\mu$ S/cm). The next meters installed in Lions Bay will be ultrasonic, not conductance based. In the end, in this case it was found that the meter's low-flow cutoff had been set too high at plant commissioning ten years ago, and it was missing lower flows; with reconfiguration we believe it is now reporting satisfactorily enough.
- The Harvey Tank was ROV-inspected to explain high chlorine consumption in the tank (see above)
- A programmatic process control change named ENSuRe (Excessive Ntu ShUtdown RoutinE)
  locks out the plant if the UV reactor has not already shut down due to insufficient UV dosage
  when the plant NTU meter determines source water exceeds parameters, and throws necessary
  alarms to bring operators to site to:
  - Reconfigure the network to bring the Village's entire supply onto the unaffected plant (unless the excess NTU period is likely to be short)
  - Watch the affected intake for clearing, and flush the line when it does
  - Bring the affected plant back online.

## LOOKING AHEAD

 To address highly restricted fireflow due to rust nodules in a cast iron watermain, commence CUBB.3, a subset of the Centre-Upper Bayview-Bayview (CUBB) watermain replacement project, funded in the 2025 municipal budget at \$1,300,000. An update to the 2016 hydraulic/flow model is underway.

CUBB.3 includes the 1970s era 6-inch cast iron line in lower Bayview Road from the south side of the Alberta Creek bridge to the intersection of Centre, down Centre past the Firehall and municipal campus, to the other side of the Crosscreek intersection. CUBB.1 is the 8-inch asbestos-cement line from the Upper Bayview cul-de-sac to approx. 455 Upper Bayview. CUBB.2 is the 6-inch cast iron line from the Bayview Place cul-de-sac to the intersection with

Upper Bayview, to Centre (the section from 455 Upper Bayview to Bayview Place was replaced in the early 2000s after a break). Preliminary design indicates that the entire CUBB project might be achievable with not much more budget if we forgo drainage and cambering changes. With approx. \$200,000 additional budget, our most needful PRV Station at the intersection of Upper Bayview and Bayview Place can be replaced if done at the same time, so a 2026 budget proposal is being prepared, awaiting a Class C design from the engineers.

- Investigate ability of plant turbidity meters to report true NTU ranges.
- Ensure all future flowmeters are ultrasonic rather than magnetic, to address Lions Bay's low conductivity water.
- Reinforce operating standard of 0.20 mg/L average chlorine residual and 0.25 mg/L max.
   throughout the distribution network, by installing high capacity automated blowoffs to flush low-use watermains to reflect the actual water being delivered to users.
- Obtain the VCH Construction Permit to allow changing the Harvey UV dose to the manufacturer's recommended 36.46 mJ/cm<sup>2</sup> (40 mJ nominal)
- Continue MAGIIC (Magnesia Intake Instrumentation & Cutout) of ENSURE (Excessive NTU Shutdown Routine):
  - 600 V power and fibreoptic data 990 meters (in previously abandoned conduit) to the intake, operational May 2025.
  - Change operating procedures to utilize continuous UVT (Aug. 2025) to throttle or shut off out-of-spec water until better is available.
  - Change the piloting of both plants' fillstation PRVs to control flowrate as opposed to taking max. supply until tank height setpoint is reached.
  - Fund continuous turbidity meter at the intake to shut down the plant before even the supply line fills.
  - In Phase 3, a powered control valve will be installed in the 10" feed line between the
    weir and the screening building to not only shut off supply when water is out of spec,
    but also to divert the constant bypass flow through the screens to reduce binding with
    vegetation.
  - After gaining experience with MAGIIC, the same functionality will be considered at the Harvey Intake, using direct bury power and data cable in the access road, the so-called HAWAII (Harvey Weir And Intake Instrumentation) Project.
- The Weir Height and Inclination Realign (WHIRL) project at Magnesia will reconfigure the weir to self-flush rocks stuck behind the weir.
- Given undesirable turbidity results in 2024, commence consideration of filtration at one primary
  plant, presumably Harvey due to its larger creek, and the Magnesia plant on standby for high
  demand-low supply periods, with turbidity low due to low creekflow.
- Add continuous chlorine/turbidity stations at watermain network ends Lions Bay Ave. and Brunswick Beach.
- Overdue replacement of 8 UV reactor shutoff valves at both plants (completed June 2025)
- New Water Bylaw.
- Commence planning for some form of active pH control.

# APPENDIX 1: HEALTH CANADA GUIDELINES FOR DRINKING WATER QUALITY (CHEMICAL)

In general, high priority guidelines are those dealing with microbiological contaminants. Any measure taken to reduce chemical contaminants should not compromise the effectiveness of disinfection. Guidelines for chemical parameters are:

- 1. Health based and listed as maximum acceptable concentrations (MAC);
- 2. Based on aesthetic considerations and listed as aesthetic objectives (AO);
- 3. Established based on operational considerations and listed as operational guidance values (OG);
- 4. Established, taking into account available treatment technology and analytical methods, in order to reduce exposure through drinking water, and listed as an objective.

| PARAMETER                                         | TYPE* MAC OTHER COMMON SOURCES IN WATER HEALTH CONSIDERATIONS (mg/L) VALUE (mg/L) |                  | HEALTH CONSIDERATIONS | APPLYING THE GUIDELINE, COMMENTS                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1,2-Dichloroethane                                | 0                                                                                 | 0.005            | None                  | Releases or spills from industrial effluents; leachate from wase disposal                                                                                                     | Health basis of MAC: Cancer of the mammary gland                                                                                                                                                                                                                                                                                                                | The MAC protects against both cancer and non-cancer effects and takes into consideration all exposures from drinking water, which include ingestion as well as inhalation and dermal absorption during showering and bathing.                                                                                                                          |  |  |
| 1,4-Dichlorobenzene                               | 0                                                                                 | 0.005            | AO: LT<br>0.001       | Releases or spills from industrial effluents; use of urinal deodorants                                                                                                        | Health basis of MAC: Benign liver tumours and adrenal gland tumours (classified as probable carcinogen)                                                                                                                                                                                                                                                         | AO based on odour; levels above the AO would render drinking water unpalatable.                                                                                                                                                                                                                                                                        |  |  |
| 1,4-Dioxane                                       | 0                                                                                 | 0.050            |                       | water supplies, but there have been cancer Tre contaminations of drinking water ad                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 | 1,4 Dioxane is difficult to remove using conventional drinking water treatment.<br>Treatment technologies such as advanced oxidation processes and synthetic<br>adsorbents need to be considered. Reverse osmosis membranes may be<br>capable of removing 1,4-dioxane at both the municipal and residential scale.                                     |  |  |
| 2,4,6-Trichlorophenol                             | 0                                                                                 | 0.005            | AO: LT<br>0.002       | By-product of drinking water<br>disinfection with chlorine; industrial<br>effluents and spills                                                                                | Health basis of MAC: Liver cancer                                                                                                                                                                                                                                                                                                                               | AO based on odour; levels above the AO would render drinking water unpalatable.                                                                                                                                                                                                                                                                        |  |  |
| 2,4-<br>Dichlorophenoxy acetic acid               | Р                                                                                 | 0.1              | None                  | Leaching and/or runoff from agricultural and non-cropland use                                                                                                                 | Health basis of MAC: Kidney effects                                                                                                                                                                                                                                                                                                                             | High potential to leach into groundwater                                                                                                                                                                                                                                                                                                               |  |  |
| 2-Methyl-4-<br>chlorophenoxyacetic<br>acid (MCPA) | Р                                                                                 | 0.35             | None                  | Leaching and/or runoff from agricultural and other uses                                                                                                                       | Health basis of MAC: Kidney effects Other: Systemic, liver, testicular, reproductive/developmental and nervous system effects                                                                                                                                                                                                                                   | Can potentially leach into groundwater.                                                                                                                                                                                                                                                                                                                |  |  |
| Aluminum                                          | Т                                                                                 | 2.9              | OG: 0.1               | Naturally occurring; aluminum salts<br>used as coagulants in drinking water<br>treatment; leaching from cement-based<br>materials; dissolution of activated<br>alumina media; | Health basis of MAC: Neuromuscular effects, urinary tract effects and general toxicity.                                                                                                                                                                                                                                                                         | The MAC and OG apply to all drinking water supplies and are to be applied as locational running annual averages. The OG value is established to minimize the potential for the accumulation and release of metals in the distribution system and to avoid other operational and aesthetic issues. It takes treatment achievability into consideration. |  |  |
| Ammonia                                           | I                                                                                 | None<br>required | None                  | Naturally occurring; released from<br>agricultural or industrial wases; added<br>as part of chloramination for drinking<br>water disinfection                                 | Levels of ammonia, either naturally present in the source water or added as part of a disinfection strategy, can affect water quality in the distribution system and should be monitored. A guideline value is not necessary as it is produced in the body and efficiently metabolized in healthy people; no adverse effects at levels found in drinking water. | To help prevent nitrification, limit excess free ammonia entering the distribution system to below 0.1 mg/L, and preferably below 0.05 mg/L, measured as nitrogen. Nitrification can lead to the formation of nitrite/nitrate, decreased chloramine residual and increased bacterial count.                                                            |  |  |
| Antimony                                          | I                                                                                 | 0.006            | None                  | Naturally occurring; soil runoff;<br>industrial effluents; leaching from<br>plumbing materials and solder                                                                     | Health basis of MAC: Changes in liver histology along with the changes in serum biochemistry                                                                                                                                                                                                                                                                    | MAC takes into consideration anticipated treatment challenges for private wells and small systems                                                                                                                                                                                                                                                      |  |  |
| Arsenic                                           | I                                                                                 | 0.010<br>ALARA   | None                  | Naturally occurring; releases from mining; industrial effluent                                                                                                                | Health basis of MAC: Cancer Other: Skin, vascular and neurological effects                                                                                                                                                                                                                                                                                      | MAC based on treatment achievability; elevated levels associated with certain groundwaters; levels should be kept as low as reasonably achievable.                                                                                                                                                                                                     |  |  |
| Asbestos                                          | I                                                                                 | None<br>required | None                  | Naturally occurring; decay of asbestos-<br>cement pipes                                                                                                                       | None                                                                                                                                                                                                                                                                                                                                                            | Guideline value not necessary; no evidence of adverse health effects from exposure through drinking water.                                                                                                                                                                                                                                             |  |  |
| Atrazine                                          | Р                                                                                 | 0.005            | None                  | Leaching and/or runoff from agricultural use                                                                                                                                  | Health basis of MAC: Developmental effects. Other: Potential increased risk of ovarian cancer or lymphomas                                                                                                                                                                                                                                                      | MAC applies to sum of atrazine and its N-dealkylated metabolites -<br>diethylatrazine, deisopropylatrazine, hydroxyatrazine, diaminochlorotriazine;<br>Persistent in source waters.                                                                                                                                                                    |  |  |
| Barium                                            | I                                                                                 | 2.0              | None                  | Naturally occurring; releases or spills from industrial uses                                                                                                                  | Health basis of MAC: Kidney effects                                                                                                                                                                                                                                                                                                                             | MAC is for total barium and takes into consideration exposure estimates from al sources.                                                                                                                                                                                                                                                               |  |  |
| Benzene                                           | 0                                                                                 | 0.005            | None                  | Releases or spills from industrial uses                                                                                                                                       | Health basis of MAC: Bone marrow changes and cancer Other:<br>Blood system and immunological responses                                                                                                                                                                                                                                                          | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing.                                                                                                                                                                                     |  |  |
| Benzo[a]pyrene                                    | 0                                                                                 | 0.00004          | None                  | Leaching from liners in water distribution systems                                                                                                                            | Health basis of MAC: Stomach tumours                                                                                                                                                                                                                                                                                                                            | None                                                                                                                                                                                                                                                                                                                                                   |  |  |

| PARAMETER                | TYPE* | MAC<br>(mg/L)    | OTHER<br>VALUE<br>(mg/L) | COMMON SOURCES IN WATER                                                                                                        | HEALTH CONSIDERATIONS                                                                                                              | APPLYING THE GUIDELINE, COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|--------------------------|-------|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Boron                    | 1     | 5                | None                     | Naturally occurring; leaching or runoff from industrial and agricultural use                                                   | Health basis of MAC: Reproductive effects in males Other:<br>Developmental effects                                                 | MAC based on treatment achievability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Bromate                  | DBP   | 0.01             | None                     | Contaminant in hypochlorite solution;<br>by-product of drinking water<br>disinfection with ozone                               | Health basis of MAC: Reproductive effects in males Other:<br>Developmental effects                                                 | Efforts to reduce bromate concentrations must not compromise the effectiveness of disinfection. Bromate is difficult to remove from drinking water once formed. The recommended strategy is controlling the ozonation process; use of certified treatment chemicals and; appropriate handling and storage of hypochlorite. Quarterly monitoring of raw water bromide is recommended to allow correlation to bromate or brominated DBPs.                                                                  |  |  |
| Bromoxynil               | P     | 0.03             | None                     | Leaching or runoff from agricultural use                                                                                       | Health basis of MAC: Increased clinical signs and liver weight, as well as both decreases in body weight and body weight gain      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Cadmium                  | I     | 0.007            | None                     | Leaching from galvanized pipes and solders; industrial and municipal wase                                                      | Health basis of MAC: Kidney damage Other: Bone effects                                                                             | MAC is for total cadmium and takes into consideration exposure estimates from all sources. Sampling should be done at the tap to reflect average exposure similar to sampling done for lead. The contribution of cadmium in drinking water is generally from the galvanized steel used in pipes and well components. The best approach to minimize exposure to cadmium from drinking water is to replace galvanized steel and components. Drinking water treatment devices are also an effective option. |  |  |
| Calcium                  | I     | None required    | None                     | Naturally occurring                                                                                                            | No evidence of adverse health effects from calcium in drinking water.                                                              | Guideline value not necessary. Calcium contributes to hardness.                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Carbon tetrachloride     | 0     | 0.002            | None                     | Industrial effluents and leaching from hazardous wase sites                                                                    | Health basis of MAC: Liver toxicity Other: Kidney damage; liver tumours                                                            | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing.                                                                                                                                                                                                                                                                                                                                       |  |  |
| Chloramines              | D     | None<br>required | None                     | Monochloramine is used as a secondary disinfectant; formed in drinking water when chlorine is added in the presence of ammonia | Guideline value not necessary due to low toxicity at concentrations found in drinking water                                        | Chloramine residuals in most Canadian drinking water distribution systems are typically below 4 mg/L                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Chlorate                 | DBP   | 1                | None                     | By-product of drinking water<br>disinfection with chlorine dioxide;<br>possible contaminant in hypochlorite<br>solution        | Health basis of MAC: Thyroid gland effects                                                                                         | As chlorate is difficult to remove once formed, its formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions.                                                                                                                                                                                                                                                                                     |  |  |
| Chlorine                 | D     | None required    | None                     | Used as drinking water disinfectant                                                                                            | A guideline value is not necessary due to low toxicity at concentrations found in drinking water                                   | Free chlorine concentrations in most Canadian drinking water distribution systems range from 0.04 to 2.0 mg/L.                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Chlorine dioxide         | D     | None required    | None                     | Used as drinking water disinfectant                                                                                            | A guideline value for chlorine dioxide is not required because of its rapid reduction to chlorite in drinking water                | A maximum feed dose of 1.2 mg/L of chlorine dioxide should not be exceeded to control the formation of chlorite and chlorate.                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Chlorite                 | DBP   | 1                | None                     | By-product of drinking water disinfection with chlorine dioxide                                                                | Health basis of MAC: Neurobehavioral effects, decreased absolute brain weight, altered liver weights                               | Chlorite formation should be controlled by respecting the maximum feed dose of 1.2 mg/L of chlorine dioxide and managing /monitoring formation in hypochlorite solutions.                                                                                                                                                                                                                                                                                                                                |  |  |
| Chlorpyrifos             | Р     | 0.09             | None                     | Leaching and/or runoff from agricultural or other uses                                                                         | Health basis of MAC: Nervous system effects                                                                                        | Not expected to leach significantly into groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Chromium                 | 1     | 0.05             | None                     | Naturally occurring; releases or spills from industrial uses                                                                   | Health basis of MAC: Hyperplasia of the small intestine from chromium. Other: No definitive evidence of toxicity to Chromium(III). | MAC protects against both cancer and non-cancer effects from Chromium and is established for total chromium.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Colour                   | T     | None             | AO: LT 15<br>TCU         | Naturally occurring organic substances, metals; industrial wases                                                               | A guideline value is not necessary as health effects are not of concern at levels found in drinking water.                         | May interfere with disinfection; removal is important to ensure effective treatment.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Copper                   | I     | 2                | AO: 1                    | Naturally occurring; leaching from copper piping                                                                               | Health basis of MAC: Gastrointestinal effects, liver and kidney effects.                                                           | Water samples should be taken at the tap. MAC is for total copper and protects against both short-term and long-term exposures. AO is based on tase and water discolouration.                                                                                                                                                                                                                                                                                                                            |  |  |
| Cyanide                  | I     | 0.2              | None                     | Industrial and mining effluents; release from organic compounds                                                                | Health basis of MAC: No clinical or other changes at the highs dose tested                                                         | At the levels seen in Canadian waters, cyanide is not a concern as it can be detoxified to a certain extent in the human body.                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Cyanobacterial toxins    | 0     | 0.0015           | None                     | Naturally occurring - released from populations of cyanobacteria                                                               | Health basis of MAC: Liver effects                                                                                                 | MAC is for total microcysins Note that infants can ingest a significantly larger volume of water per body weight. As a precautionary measure, where levels of total microcysins in treated water are detected above a reference value of 0.4 µg/L, the public in the affected area should use an alternate suitable source of drinking water to reconstitute infant formula.                                                                                                                             |  |  |
| Dicamba                  | Р     | 0.11             | None                     | Leaching or runoff from agricultural or other uses                                                                             | Health basis of MAC: Clinical chemistry and inflammation of the prostate                                                           | Readily leaches into groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Dichloromethane          | 0     | 0.05             | None                     | Industrial and municipal wastewater discharges                                                                                 | Health basis of MAC: Liver effects. Other: Classified as probable carcinogen                                                       | The MAC protects against both cancer and non-cancer effects and takes into consideration all exposures from drinking water, which include ingestion as well as inhalation and dermal absorption during showering and bathing.                                                                                                                                                                                                                                                                            |  |  |
| Dimethoate and omethoate | Р     | 0.02             | None                     | Leaching and/or runoff from agricultural and non-agricultural use                                                              | Health basis of MAC: Nervous system effects                                                                                        | MAC is for dimethoate. An additive approach should be taken in which the sum of the detected concentrations of dimethoate and omethoate does not exceed the MAC for dimethoate.                                                                                                                                                                                                                                                                                                                          |  |  |

| PARAMETER                   | TYPE* | MAC<br>(mg/L)    | OTHER<br>VALUE<br>(mg/L) | COMMON SOURCES IN WATER                                                                                                                                                                                                                                 | HEALTH CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                      | APPLYING THE GUIDELINE, COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|-------|------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diquat                      | Р     | 0.05             | None                     | Leaching and/or runoff from agricultural<br>use; added directly to water to control<br>aquatic weeds                                                                                                                                                    | Health basis of MAC: Cataract formation                                                                                                                                                                                                                                                                                                                                                                                    | Unlikely to leach into groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ethylbenzene                | 0     | 0.14             | AO: 0.0016               | Emissions, effluents or spills from<br>petroleum and chemical industries                                                                                                                                                                                | Health basis of MAC: Effects on the liver and pituitary gland. Other:<br>Tumour formation at various sites in animals, including kidney, lung,<br>liver and testes.                                                                                                                                                                                                                                                        | MAC protects against both cancer and non-cancer health effects. MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. AO is based on odour.                                                                                                                                                                                                                    |
| Fluoride                    | I     | 1.5              | None                     | Naturally occurring; may be added to promote dental health                                                                                                                                                                                              | Health basis of MAC: Moderate dental fluorosis                                                                                                                                                                                                                                                                                                                                                                             | Beneficial in preventing dental caries.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Formaldehyde                | DBP   | None required    | None                     | By-product of disinfection with ozone; releases from industrial effluents                                                                                                                                                                               | A guideline value is not necessary as health effects are not of concern at levels found in drinking water.                                                                                                                                                                                                                                                                                                                 | A guideline value is not necessary, as levels in drinking water are below the level at which adverse health effects may occur.                                                                                                                                                                                                                                                                                                                                              |
| Glyphosate                  | Р     | 0.28             | None                     | Leaching and/or runoff from various uses in weed control                                                                                                                                                                                                | Health basis of MAC: Reduced body weight gain                                                                                                                                                                                                                                                                                                                                                                              | Not expected to migrate to groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Haloacetic acids, total     | DBP   | 0.08<br>ALARA    | None                     | By-product of drinking water disinfection with chlorine                                                                                                                                                                                                 | Health basis of MAC: Liver cancer; DCA is classified as probably carcinogenic to humans Other: Other organ cancers; liver and other organ effects                                                                                                                                                                                                                                                                          | Refers to the total of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid and dibromoacetic acid; MAC is based on ability to achieve HAA levels in distribution systems without compromising disinfection; precursor removal limits formation.                                                                                                                                                                                          |
| Hardness                    | Т     | None<br>required | None                     | Naturally occurring; levels generally<br>higher in groundwater                                                                                                                                                                                          | Although hardness may have significant aesthetic effects, a guideline has not been established. Major contributors to hardness are not of health concern at levels found in drinking water. Public acceptance of hardness may vary considerably according to the local conditions.                                                                                                                                         | Hardness levels are primarily based on calcium and magnesium in water. Water with a hardness greater than 200 mg/L is considered poor and in excess of 500 mg/L is generally unacceptable for domestic use. Where a water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended.                                                                                                                                                  |
| Hydrogen sulphide           | I     | None             | AO: LT 0.05              | Can occur in the distribution system from the reduction of sulphates by sulphate-reducing bacteria; a breakdown of organic matter in the absence of oxygen.                                                                                             | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iron                        | ı     | None             | AO: LT 0.1               | Naturally occurring; Released from<br>iron-based drinking water materials or<br>as iron corrosion by- products and in<br>water treatment processes. Human<br>activities such as mine drainage water.<br>acid mine effluents and agricultural<br>runoff. | A guideline value is not necessary as health effects are not of concern at levels found in drinking water and at the level at which the AO is set.                                                                                                                                                                                                                                                                         | AO is for total iron and is based on minimizing the occurrence of discoloured water and to improve consumer confidence in drinking water quality. Removal of iron also improves the removal of manganese, reducing the health risk associated with this metal.                                                                                                                                                                                                              |
| Lead                        | I     | 0.005<br>ALARA   | None                     | Leaching from plumbing                                                                                                                                                                                                                                  | Health basis of MAC: Reduced intelligence in children measured as decreases in IQ is the most sensitive and well-established health effect of lead exposure. There is no known safe exposure level to lead. Other: Possible effects include behavioural effects in children. Reduced cognition, increased blood pressure, and renal dysfunction in adults are also possible; classified as probably carcinogenic to humans | MAC is for total lead. Lead levels should be kept as low as reasonably achievable. Sampling should be done at the tap to reflect average exposure. The most significant contribution of lead in drinking water is generally from the lead service line that supplies drinking water to the home. The best approach to minimize exposure to lead from drinking water is to remove the full lead service line. Drinking water treatment devices are also an effective option. |
| Magnesium                   | I     | None<br>required | None                     | Naturally occurring                                                                                                                                                                                                                                     | No evidence of adverse health effects from magnesium in drinking water, therefore a guideline value is not necessary.                                                                                                                                                                                                                                                                                                      | Guideline value not necessary. Magnesium contributes to hardness.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Malathion                   | Р     | 0.29             | None                     | Leaching and/or runoff from agricultural and other uses                                                                                                                                                                                                 | Health basis of MAC: Kidney effects Other: Nervous system effects                                                                                                                                                                                                                                                                                                                                                          | Unlikely to leach into groundwater. When using oxidation or advanced oxidation processes for malathion removal, water utilities should be aware of the potential for the formation of degradation by products.                                                                                                                                                                                                                                                              |
| Manganese                   | I     | 0.12             | AO: LT 0.02              | Dissolution of naturally occurring minerals commonly found in soil and rock. Other sources include industrial discharge, mining activities and leaching from landfills                                                                                  | Health Basis of MAC: Effects on neurological development and behaviour; deficits in memory, attention, and motor skills. Other: Formula-fed infants may be especially at risk                                                                                                                                                                                                                                              | AO based on minimizing the occurrence of discoloured water, consumer complaints and saining of laundry.                                                                                                                                                                                                                                                                                                                                                                     |
| Mercury                     | I     | 0.001            | None                     | Releases or spills from industrial<br>effluents; wase disposal; irrigation or<br>drainage of areas where agricultural<br>pesticides are used                                                                                                            | Health basis of MAC: Irreversible neurological symptoms                                                                                                                                                                                                                                                                                                                                                                    | Applies to all forms of mercury; mercury generally not found in drinking water, as it binds to sediments and soil.                                                                                                                                                                                                                                                                                                                                                          |
| Methyl tertiary-butyl ether | 0     | None             | AO: LT<br>0.015          | Spills from gasoline refineries, fling stations and gasoline-powered boats; seepage into groundwater from leaking storage tanks                                                                                                                         | The AO is lower than levels associated with potential toxicological effects, it is considered protective of human health. Studies on toxic effects remain inconclusive.                                                                                                                                                                                                                                                    | AO based on odour; levels above the AO would render water unpalatable.                                                                                                                                                                                                                                                                                                                                                                                                      |
| Metribuzin                  | Р     | 0.08             | None                     | Leaching and/or runoff from agricultural use                                                                                                                                                                                                            | Health basis of MAC: Liver effects                                                                                                                                                                                                                                                                                                                                                                                         | Leaching into groundwater depends on topography, precipitation and site-specific soil characteristics, such as organic matter content and soil pH.                                                                                                                                                                                                                                                                                                                          |

| PARAMETER                                      | TYPE* | MAC<br>(mg/L)                                   | OTHER<br>VALUE<br>(mg/L)       | COMMON SOURCES IN WATER                                                                                                                                                                           | HEALTH CONSIDERATIONS                                                                                                                                                                                                                                                                   | APPLYING THE GUIDELINE, COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------|-------|-------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Nitrate                                        | I     | 45 as<br>nitrate; 10<br>as nitrate-<br>nitrogen | None                           | Naturally occurring; leaching or runoff<br>from agricultural fertilizer use, manure<br>and domestic sewage; may be<br>produced from excess ammonia or<br>nitrification in the distribution system | Health basis of MAC: Methaemoglobinaemia and effects on thyroid gland function in bottle-fed infants Other: Classified as possible carcinogen under conditions that result in endogenous nitrosation                                                                                    | Systems using chloramine disinfection or that have naturally occurring ammonia should monitor the level of nitrate in the distribution system. Homeowners with a well should test concentration of nitrate in their water supply.                                                                                                                                                                                                                                |  |  |
| Nitrilotriacetic acid (NTA)                    | I     | 0.4                                             | None                           | Sewage contamination                                                                                                                                                                              | Health basis of MAC: Kidney effects Other: Classified as possible carcinogen                                                                                                                                                                                                            | MAC is based upon exposure mainly attributable to drinking water with 20% of exposure attributable to food.                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Nitrite                                        | I     | 3 as nitrite;<br>1 as nitrite-<br>nitrogen      | None                           | Naturally occurring; leaching or runoff<br>from agricultural fertilizer use, manure<br>and domestic sewage; may be<br>produced from excess ammonia or<br>nitrification in the distribution system | Health basis of MAC: methemoglobinemia in bottle-fed infants less than 6 months of age. Other: classified as possible carcinogen under conditions that result in endogenous nitrosation                                                                                                 | Systems using chloramine disinfection or that have naturally occurring ammonia should monitor the level of nitrite in the distribution system. Homeowners with a well should test concentration of nitrite in their water supply.                                                                                                                                                                                                                                |  |  |
| N-nitroso dimethylamine                        | DBP   | 0.00004                                         | None                           | By-product of drinking water<br>disinfection with chlorine or<br>chloramines; industrial and sewage<br>treatment plant effluents                                                                  | Health basis of MAC: Liver cancer                                                                                                                                                                                                                                                       | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. Levels should be kept low by preventing formation during treatment.                                                                                                                                                                                                                           |  |  |
| Odour                                          | A     | None                                            | Inoffensive                    | Biological or industrial sources                                                                                                                                                                  | Not applicable                                                                                                                                                                                                                                                                          | Important to provide drinking water with no offensive odour, as consumers may seek alternative sources that are less safe.                                                                                                                                                                                                                                                                                                                                       |  |  |
| Pentachlorophenol                              | 0     | 0.06                                            | AO: LT 0.03                    | By-product of drinking water<br>disinfection with chlorine; industrial<br>effluents                                                                                                               | Health basis of MAC: Reduced body weight, changes in clinical parameters, histological changes in kidney and liver, reproductive effects                                                                                                                                                | AO based on odour; levels above the AO would render drinking water unpalatable.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Per- and poly-fluoroalkyl<br>substances (PFAS) | 0     | None                                            | Objective:<br>0.00003<br>ALARA | Synthetic chemicals used in consumer products and fire-fighting foams for their water and oil repellant properties.                                                                               | Certain PFAS may have effects on the liver, immune system, kidney, reproduction, development, endocrine system (thyroid), the nervous system, and metabolism (lipids, glucose homeostasis, body weight). The lower the levels of exposure to PFAS, the lower the risk to public health. | The objective is based on analytical and treatment achievability and applies to the sum of 25 specified PFAS. If measurements of PFAS in drinking water are approaching or exceed the 30 ng/L objective, it may be useful to examine the types of PFAS that are present in the greatest concentrations.                                                                                                                                                          |  |  |
| рН                                             | Т     | None                                            | 7.0-10.5                       | Not applicable                                                                                                                                                                                    | Not applicable                                                                                                                                                                                                                                                                          | The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.                                                                                                                                                                                                                                                                                                      |  |  |
| Selenium                                       | I     | 0.05                                            | None                           | Naturally occurring and release from coal ash from coal- fired power plants and mining, refining of copper and other metals.                                                                      | Health basis of MAC: chronic selenosis symptoms in humans following exposure to high levels Other: Hair loss, tooth decay, weakened nails and nervous system disturbances at extremely high levels of exposure                                                                          | Selenium is an essential nutrient. Mos exposure is from food; little information on toxicity of selenium from drinking water. Selenium can be found in non-leaded brass alloy where it is added to replace lead.                                                                                                                                                                                                                                                 |  |  |
| Silver                                         | I     | None required                                   | None                           | Naturally occurring                                                                                                                                                                               | Not applicable                                                                                                                                                                                                                                                                          | Guideline value not required as drinking water contributes negligibly to an individual's daily intake.                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Sodium                                         | I     | None                                            | AO: LT 200                     | Naturally occurring; sewage and industrial effluents; sodium-based water softeners                                                                                                                | For persons on strict sodium reduced diets applying to all sources, levels in drinking water should be below 20 mg/L                                                                                                                                                                    | Based on tase; where a sodium-based water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended.                                                                                                                                                                                                                                                                                                                       |  |  |
| Strontium                                      | I     | 7.0                                             |                                | Naturally occurring; effluents from mining or other industries                                                                                                                                    | Health basis of MAC: Bone effects                                                                                                                                                                                                                                                       | MAC is protective of the most sensitive sub-population, infants.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Sulphate                                       | I     | None                                            | AO: LT 500                     | Naturally occurring: Industrial wases                                                                                                                                                             | High levels can cause physiological effects such as diarrhoea or dehydration                                                                                                                                                                                                            | Based on tase and operational considerations related to corrosion.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Taste                                          | А     | None                                            | Inoffensive                    | Biological or industrial sources                                                                                                                                                                  | Not applicable                                                                                                                                                                                                                                                                          | Important to provide drinking water with no offensive tase, as consumers may seek alternative sources that are less safe.                                                                                                                                                                                                                                                                                                                                        |  |  |
| Tetrachloroethylene                            | 0     | 0.01                                            | None                           | Spill or other point source of contamination                                                                                                                                                      | Health basis of MAC: Neurological effects in humans. Other:<br>Classified as probably carcinogenic to humans, based on sufficient<br>evidence in experimental animals and limited evidence in humans                                                                                    | Primarily a concern in groundwater, as it volatilizes easily from surface water; MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing.                                                                                                                                                                                                              |  |  |
| Toluene                                        | 0     | 0.06                                            | AO: 0.024                      | Emissions, effluents or spills from petroleum and chemical industries                                                                                                                             | Health basis of MAC: Adverse neurological effects, including vibration thresholds, colour discrimination, auditory thresholds, attention, memory and psychomotor functions Other: Insufficient information to determine whether toluene is carcinogenic to humans.                      | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. AO is based on odour.                                                                                                                                                                                                                                                                         |  |  |
| Trichloroethylene                              | 0     | 0.005                                           | None                           | Industrial effluents and spills from improper disposal                                                                                                                                            | Health basis of MAC: Developmental effects Other: Classified as probable carcinogen                                                                                                                                                                                                     | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing.                                                                                                                                                                                                                                                                                               |  |  |
| Trihalomethanes (THM)                          | DBP   | 0.1                                             | None                           | By-product of drinking water<br>disinfection with chlorine; industrial<br>effluents                                                                                                               | Health basis of MAC: Liver effects Other: Kidney and colorectal cancers                                                                                                                                                                                                                 | Refers to the total of chlorodibromomethane, chloroform, bromodichloromethane and bromoform; MAC based on health effects of chloroform. MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. Utilities should make every effort to maintain concentrations as low as reasonably achievable without compromising the effectiveness of disinfection. |  |  |

| PARAMETER      | TYPE* | MAC<br>(mg/L)  | OTHER<br>VALUE<br>(mg/L) | COMMON SOURCES IN WATER                                                                                                                       | HEALTH CONSIDERATIONS                                                                                                                             | APPLYING THE GUIDELINE, COMMENTS                                                                                                                                                                                                                                               |
|----------------|-------|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |       |                |                          |                                                                                                                                               |                                                                                                                                                   | Recommended strategy is precursor removal. The separate MAC for BDCM was rescinded in April 2009.                                                                                                                                                                              |
| Uranium        | I     | 0.02           | None                     | Naturally occurring; mill tailings;<br>emissions from nuclear industry and<br>combustion of coal and other fuels;<br>phosphate fertilizers    | Health basis of MAC: Kidney effects                                                                                                               | Based on challenges and operational cos impacts for some private wells and small systems; MAC is for total uranium and is protective in relation to both chemical and radiological hazards.                                                                                    |
| Vinyl chloride | 0     | 0.002<br>ALARA | None                     | Industrial effluents; degradation<br>product from organic solvents in<br>groundwater; leaching from polyvinyl<br>chloride pipes               | Health basis of MAC: Liver cancer Other: Raynaud's disease, effects on bone, circulatory system, thyroid, spleen, central nervous system          | Based on analytical achievability. MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. Leaching from polyvinyl chloride pipe is not expected to be significant. |
| Xylenes        | 0     | 0.09           | AO: 0.02                 | Emissions, effluents or spills from petroleum and chemical industries                                                                         | Health basis of MAC: Adverse neuromuscular effects Other:<br>Insufficient information to determine whether xylenes are<br>carcinogenic to humans. | MAC takes into consideration all exposures from drinking water, which include ingestion, as well as inhalation and dermal absorption during showering and bathing. AO is based on odour.                                                                                       |
| Zinc           | I     |                | AO: LT 5.0               | Naturally occurring; industrial and<br>domestic emissions; leaching may<br>occur from galvanized pipes, hot water<br>tanks and brass fittings | Zinc is an essential element and is generally considered to be non-toxic, however levels above the AO in water would render it unpalatable.       | AO based on tase; water with zinc levels above the AO tends to be opalescent and develops a greasy film when boiled; plumbing should be thoroughly flushed before water is consumed.                                                                                           |

\*Type:

A, Acceptability

D, Disinfectant

DBP, Disinfection byproduct

P, Pesticide

I, inorganic chemical

O, organic chemical

T, treatment related parameter.

# **APPENDIX 2: DISINFECTION BYPRODUCTS ANALYSES**

 Page
 :
 3 of 3

 Work Order
 :
 VA24A5718

 Client
 :
 Village of Lions Bay



## Analytical Results

| Sub-Matrix: Water Client sar            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ient sample ID | Kelvin Grove         | Lions Bay            | Brunswick            | Community            |             |
|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------------------|----------------------|----------------------|----------------------|-------------|
| (Matrix: Water)                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |                      | Avenue               | Beach                | Centre               |             |
|                                         |                 | Client sampling date / time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                | 19-Mar-2024<br>05:35 | 19-Mar-2024<br>07:00 | 19-Mar-2024<br>08:45 | 19-Mar-2024<br>06:25 | <u>S115</u> |
| Analyte                                 | CAS Number      | Method/Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOR  | Unit           | VA24A5718-001        | VA24A5718-002        | VA24A5718-003        | VA24A5718-004        |             |
|                                         | SERVE BEAUTIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                | Result               | Result               | Result               | Result               |             |
| Volatile Organic Compounds [THMs]       |                 | SECURIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANION DELIGIO DE LA COMPANIO DE LA COMPAN |      |                |                      | 7                    |                      |                      |             |
| Bromodichloromethane                    | 75-27-4         | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  | μg/L           | <1.0                 | <1.0                 | <1.0                 | <1.0                 | -           |
| Bromoform                               | 75-25-2         | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  | μg/L           | <1.0                 | <1.0                 | <1.0                 | <1.0                 |             |
| Chloroform                              | 67-66-3         | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  | μg/L           | 57.5                 | 57.4                 | 52.1                 | 49.6                 |             |
| Dibromochloromethane                    | 124-48-1        | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  | μg/L           | <1.0                 | <1.0                 | <1.0                 | <1.0                 | -           |
| Trihalomethanes [THMs], total           | E               | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0  | µg/L           | 57.5                 | 57.4                 | 52.1                 | 49.6                 |             |
| Volatile Organic Compounds [THMs] Surro |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |                      |                      |                      |                      |             |
| Bromofluorobenzene, 4-                  | 460-00-4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0  | %              | 87.5                 | 89.2                 | 85.2                 | 90.8                 |             |
| Difluorobenzene, 1,4-                   | 540-38-3        | E611B/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  | %              | 98.8                 | 99.2                 | 99.9                 | 95.2                 |             |
| Haloacetic Acids                        |                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                |                      |                      |                      |                      |             |
| Bromochloroacetic acid                  | 5589-96-8       | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | <1.00                | <1.00                | <1.00                | <1.00                | -           |
| Dibromoacetic acid                      | 631-64-1        | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Dichloroacetic acid                     | 79-43-6         | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | 24.7                 | 25.0                 | 23.7                 | 21.0                 |             |
| Monobromoacetic acid                    | 79-08-3         | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Monochloroacetic acid                   | 79-11-8         | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | 1.12                 | <1.00                | <1.00                | 1.02                 | -           |
| richloroacetic acid                     | 76-03-9         | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 | μg/L           | 33.2                 | 32.2                 | 29.5                 | 26.6                 | -22         |
| Haloacetic acids, total [HAA5]          | n/a l           | E750/WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00 | μg/L           | 59.0                 | 57.2                 | 53.2                 | 48.6                 |             |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

 Page
 :
 3 of 4

 Work Order
 :
 VA24B2790

 Client
 :
 Village of Lions Bay

Project : ---



# Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |               |            | С           | lient sample ID   | Harvey Raw<br>Water  | Magnesia Raw<br>Water | 7 <del>4-</del> 4 | 1 2           |     |
|----------------------------------------------|---------------|------------|-------------|-------------------|----------------------|-----------------------|-------------------|---------------|-----|
|                                              |               |            | Client samp | oling date / time | 04-Jun-2024<br>08:10 | 04-Jun-2024<br>08:45  | _                 |               | 922 |
| Analyte                                      | CAS Number    | Method/Lab | LOR         | Unit              | VA24B2790-005        | VA24B2790-006         |                   |               |     |
|                                              | E-40 Financia |            |             | 1                 | Result               | Result                | 744               | - <del></del> |     |
| Physical Tests                               |               |            |             |                   |                      | -11111                |                   |               |     |
| Conductivity                                 | E             | 100/VA     | 2.0         | μS/cm             | 14.2                 | 18.5                  | (100)             |               |     |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

# Analytical Results

| Sub-Matrix: Water                       |              |            | CI          | ient sample ID   | Kelvin Grove         | Lions Bay Ave.       | Brunswick            | Community            | 0.000    |
|-----------------------------------------|--------------|------------|-------------|------------------|----------------------|----------------------|----------------------|----------------------|----------|
| (Matrix: Water)                         |              |            |             |                  |                      | Beach                | Centre               |                      |          |
|                                         |              |            | Client samp | ling date / time | 04-Jun-2024<br>05:55 | 04-Jun-2024<br>07:10 | 04-Jun-2024<br>09:45 | 04-Jun-2024<br>06:35 | -        |
| Analyte                                 | GAS Number   | Method/Lab | LOR         | Unit             | VA24B2790-001        | VA24B2790-002        | VA24B2790-003        | VA24B2790-004        | S-110-11 |
|                                         |              |            | 1           |                  | Result               | Result               | Result               | Result               | ST05     |
| Volatile Organic Compounds [THMs]       |              |            |             |                  |                      | A                    |                      | St                   |          |
| Bromodichloromethane                    | 75-27-4 E6   | 11B/VA     | 1.0         | μg/L             | <1.0                 | <1.0                 | <1.0                 | <1.0                 | -        |
| Bromoform                               | 75-25-2 E6   | 11B/VA     | 1.0         | μg/L             | <1.0                 | <1.0                 | <1.0                 | <1.0                 |          |
| Chloroform                              | 67-66-3 E6   | 11B/VA     | 1.0         | μg/L             | 47.2                 | 36.8                 | 41.6                 | 41.4                 | 9,700    |
| Dibromochloromethane                    | 124-48-1 E6  | 11B/VA     | 1.0         | μg/L             | <1.0                 | <1.0                 | <1.0                 | <1.0                 |          |
| Trihalomethanes [THMs], total           | E6           | 11B/VA     | 2.0         | μg/L             | 47.2                 | 36.8                 | 41.6                 | 41.4                 | 3,00     |
| Volatile Organic Compounds [THMs] Surre | ogates       |            |             |                  |                      |                      |                      | W 57                 |          |
| Bromofluorobenzene, 4-                  | 460-00-4 E6  | 11B/VA     | 1.0         | %                | 83.8                 | 86.5                 | 86.0                 | 86.6                 | 5,777    |
| Difluorobenzene, 1,4-                   | 540-36-3 E6  | 11B/VA     | 1.0         | %                | 108                  | 109                  | 110                  | 108                  | 500      |
| Haloacetic Acids                        |              |            | 7/6         |                  |                      |                      |                      |                      |          |
| Bromochloroacetic acid                  | 5589-96-8 E7 | 50/WT      | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                | 5777     |
| Bromodichloroacetic acid                | 7113-14-7 E7 | 50/WT      | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |          |
| Chlorodibromoacetic acid                | 5278-95-5 E7 | 50/WT      | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |          |
| Dalapon                                 | 75-99-0 E7   | 50/WT      | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |          |
| Dibromoacetic acid                      | 631-64-1 E7  | 50/WT      | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |          |
| Dichloroacetic acid                     | 79-43-8 E7   | 50/WT      | 1.00        | μg/L             | 15.9                 | 22.7                 | 25.0                 | 23.4                 |          |

alsglobal.com

 Page
 :
 4 of 4

 Work Order
 :
 VA24B2790

 Client
 :
 Village of Lions Bay

ALS

Project : ----

# **Analytical Results**

| Sub-Matrix: Water<br>(Matrix: Water) |            |            | CI          | ient sample ID   | Kelvin Grove         | Lions Bay Ave.       | Brunswick<br>Beach   | Community<br>Centre  | 15575 |
|--------------------------------------|------------|------------|-------------|------------------|----------------------|----------------------|----------------------|----------------------|-------|
|                                      |            |            | Client samp | ling date / time | 04-Jun-2024<br>05:55 | 04-Jun-2024<br>07:10 | 04-Jun-2024<br>09:45 | 04-Jun-2024<br>06:35 |       |
| Analyte                              | CAS Number | Method/Lab | LOR         | Unit             | VA24B2790-001        | VA24B2790-002        | VA24B2790-003        | VA24B2790-004        |       |
|                                      |            |            |             | T T              | Result               | Result               | Result               | Result               |       |
| Haloacetic Acids                     |            |            |             |                  |                      |                      |                      |                      |       |
| lodoacetic acid                      | 64-69-7    | E750/WT    | 1.00        | µg/L             | <1.00                | <1.00                | <1.00                | <1.00                |       |
| Monobromoacetic acid                 | 79-08-3    | E750/WT    | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |       |
| Monochloroacetic acid                | 79-11-8    | E750/WT    | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |       |
| Tribromoacetic acid                  | 75-96-7    | E750/WT    | 1.00        | μg/L             | <1.00                | <1.00                | <1.00                | <1.00                |       |
| Trichloroacetic acid                 | 76-03-9    | E750/WT    | 1.00        | μg/L             | 34.0                 | 32.9                 | 32.5                 | 30.8                 |       |
| Haloacetic acids, total [HAA5]       | n/a        | E750/WT    | 5.00        | μg/L             | 49.9                 | 55.6                 | 57.5                 | 54.2                 |       |
| Haloacetic acids, total [HAA7]       | n/a        | E750/WT    | 5.00        | μg/L             | 49.9                 | 55.6                 | 57.5                 | 54.2                 |       |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

 Page
 :
 3 of 3

 Work Order
 :
 VA24C3724

 Client
 :
 Village of Lions Bay

 Project
 :
 ---



# Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)    |                      | lient sample ID | Kelvin Grove      | Lions Bay Ave.       | Brunswick<br>Beach   | Community<br>Centre  | ===                  |             |
|-----------------------------------------|----------------------|-----------------|-------------------|----------------------|----------------------|----------------------|----------------------|-------------|
|                                         |                      | Client samp     | oling date / time | 11-Sep-2024<br>05:55 | 11-Sep-2024<br>07:15 | 11-Sep-2024<br>08:10 | 11-Sep-2024<br>06:30 | <u>5115</u> |
| Analyte                                 | CAS Number Method/La | b LOR           | Unit              | VA24C3724-001        | VA24C3724-002        | VA24C3724-003        | VA24C3724-004        |             |
|                                         | SEASTHERMAN (III)    |                 |                   | Result               | Result               | Result               | Result               |             |
| Volatile Organic Compounds [THMs]       | 100                  |                 |                   |                      |                      |                      | N N N 19             |             |
| Bromodichloromethane                    | 75-27-4 E811B/VA     | 1.0             | µg/L              | <1.0                 | <1.0                 | <1.0                 | <1.0                 |             |
| Bromoform                               | 75-25-2 E611B/VA     | 1.0             | µg/L              | <1.0                 | <1.0                 | <1.0                 | <1.0                 |             |
| Chloroform                              | 67-66-3 E611B/VA     | 1.0             | µg/L              | 31.8                 | 30.8                 | 22.1                 | 24.5                 |             |
| Dibromochloromethane                    | 124-48-1 E611B/VA    | 1.0             | μg/L              | <1.0                 | <1.0                 | <1.0                 | <1.0                 | -           |
| Trihalomethanes [THMs], total           | E611B/VA             | 2.0             | μg/L              | 31.8                 | 30.8                 | 22.1                 | 24.5                 |             |
| Volatile Organic Compounds [THMs] Surro | gates                |                 | -                 |                      |                      |                      |                      |             |
| Bromofluorobenzene, 4-                  | 460-00-4 E611B/VA    | 1.0             | %                 | 88.1                 | 87.6                 | 90.9                 | 93.4                 | -           |
| Difluorobenzene, 1,4-                   | 540-36-3 E611B/VA    | 1.0             | %                 | 97.3                 | 97.1                 | 96.8                 | 96.4                 |             |
| Haloacetic Acids                        |                      |                 | -                 |                      |                      |                      |                      |             |
| Bromochloroacetic acid                  | 5589-96-8 E750/WT    | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Bromodichloroacetic acid                | 7113-14-7 E750/WT    | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                | -           |
| Chlorodibromoacetic acid                | 5278-95-5 E750/WT    | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Dalapon                                 | 75-99-0 E750/WT      | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Dibromoacetic acid                      | 631-64-1 E750/WT     | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Dichloroacetic acid                     | 79-43-8 E750/WT      | 1.00            | μg/L              | 8.83                 | 8.78                 | 10.0                 | 10.8                 |             |
| lodoacetic acid                         | 64-69-7 E750/WT      | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Monobromoacetic acid                    | 79-08-3 E750/WT      | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Monochloroacetic acid                   | 79-11-8 E750/WT      | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Tribromoacetic acid                     | 75-98-7 E750/WT      | 1.00            | μg/L              | <1.00                | <1.00                | <1.00                | <1.00                |             |
| Trichloroacetic acid                    | 76-03-9 E750/WT      | 1.00            | μg/L              | 20.9                 | 23.1                 | 15.5                 | 17.4                 |             |
| Haloacetic acids, total [HAA5]          | n/a E750/WT          | 5.00            | μg/L              | 29.7                 | 31.9                 | 25.5                 | 28.2                 |             |
| Haloacetic acids, total [HAA7]          | n/a E750/WT          | 5.00            | μg/L              | 29.7                 | 31.9                 | 25.5                 | 28.2                 | 0.000       |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Work Order : VA24D2888 : Village of Lions Bay Client

Project



# **Analytical Results**

| Sub-Matrix: Water<br>(Matrix: Water)  |            |            | Client          | sample ID   | Kelvin Grove      | Lions Bay Ave.    | Brunswick Beach   | Community Centre  |                 |
|---------------------------------------|------------|------------|-----------------|-------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| 304 314 Maria 490 3300 40 40 30 40 50 | 100        |            | Client sampling | date / time | 05-Dec-2024 05:30 | 05-Dec-2024 06:50 | 05-Dec-2024 08:50 | 05-Dec-2024 06:10 | 1111            |
| Analyte                               | CAS Number | Method/Lab | LOR             | Unit        | VA24D2888-001     | VA24D2888-002     | VA24D2888-003     | VA24D2888-004     |                 |
|                                       |            |            |                 |             | Result            | Result            | Result            | Result            |                 |
| Volatile Organic Compounds [THMs]     |            |            |                 |             |                   |                   |                   |                   |                 |
| Bromodichloromethane                  | 75-27-4    | E611B/VA   | 1.0             | µg/L        | <1.0              | <1.0              | 1.2               | <1.0              |                 |
| Bromoform                             | 75-25-2    | E611B/VA   | 1.0             | μg/L        | <1.0              | <1.0              | <1.0              | <1.0              |                 |
| Chloroform                            | 67-66-3    | E611B/VA   | 1.0             | μg/L        | 41.7              | 34.3              | 37.0              | 33.6              |                 |
| Dibromochloromethane                  | 124-48-1   | E611B/VA   | 1.0             | µg/L        | <1.0              | <1.0              | <1.0              | <1.0              |                 |
| Trihalomethanes [THMs], total         |            | E611B/VA   | 2.0             | µg/L        | 41.7              | 34.3              | 38.2              | 33.6              |                 |
| Volatile Organic Compounds [THMs] Su  | rrogates   |            |                 | -           |                   |                   |                   | 100               |                 |
| Bromofluorobenzene, 4-                | 460-00-4   | E611B/VA   | 1.0             | %           | 94.3              | 93.8              | 94.2              | 94.6              | 2.777           |
| Difluorobenzene, 1,4-                 | 540-36-3   | E611B/VA   | 1.0             | %           | 99.4              | 99.3              | 100               | 100               | 2.000           |
| Haloacetic Acids                      |            |            |                 |             |                   |                   | 37                |                   |                 |
| Bromochloroacetic acid                | 5589-96-8  | E750/WT    | 1.00            | µg/L        | <1.00             | <1.00             | <1.00             | <1.00             | 9222            |
| Dibromoacetic acid                    | 631-64-1   | E750/WT    | 1.00            | μg/L        | <1.00             | <1.00             | <1.00             | <1.00             | 9244            |
| Dichloroacetic acid                   | 79-43-8    | E750/WT    | 1.00            | µg/L        | 10.5              | 16.0              | 10.2              | 14.4              | ; <del></del> ; |
| Monobromoacetic acid                  | 79-08-3    | E750/WT    | 1.00            | µg/L        | <1.00             | <1.00             | <1.00             | <1.00             |                 |
| Monochloroacetic acid                 | 79-11-8    | E750/WT    | 1.00            | µg/L        | <1.00             | <1.00             | <1.00             | <1.00             |                 |
| Trichloroacetic acid                  | 76-03-9    | E750/WT    | 1.00            | µg/L        | 27.7              | 23.6              | 18.2              | 21.6              |                 |
| Haloacetic acids, total [HAA5]        | n/a        | E750/WT    | 5.00            | μg/L        | 38.2              | 39.6              | 28.4              | 36.0              | 2.777           |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

alsglobal.com Page: 3 of 4

Work Order : VA24D2888 : Village of Lions Bay Client

Project



# **Analytical Results**

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |            | Client          | sample ID   | Harvey Raw<br>Water | Magnesia Raw<br>Water | C <del>imi</del> s | Section 1 | 57.50    |
|----------------------------------------------|------------|------------|-----------------|-------------|---------------------|-----------------------|--------------------|-----------|----------|
| 2                                            |            |            | Client sampling | date / tlme | 05-Dec-2024 09:55   | 05-Dec-2024 08:25     |                    |           |          |
| Analyte                                      | CAS Number | Method/Lab | LOR             | Unit        | VA24D2888-005       | VA24D2888-006         |                    |           |          |
| 100                                          |            |            |                 |             | Result              | Result                | 7 <u></u> 2        | 9144      | <u> </u> |
| Physical Tests                               |            |            |                 |             |                     |                       |                    |           |          |
| Conductivity                                 | Ser        | E100/VA    | 2.0             | μS/cm       | 13.3                | 30.9                  | -                  | 22        | (        |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

alsglobal.com Page: 4 of 4

# APPENDIX 3: SOURCE WATER TURBIDITY & UVT

| RAW WAT                  | TER UVT (                 | < 90% FLA                          | GGED) AI     |                   | DITY (> 1 f  | NTU FLAG          | GED)              |
|--------------------------|---------------------------|------------------------------------|--------------|-------------------|--------------|-------------------|-------------------|
|                          | a. 0                      | 8                                  | HAR          | RVEY              | MAGI         | NESIA             | ALBERTA           |
| 2024 workdays            | Days since<br>last sample | Rain, 2-<br>station-<br>average/mm | %/T/U        | Turbidity<br>/NTU | WT/%         | Turbidity<br>/NTU | Turbidity<br>/NTU |
| Tue 02 Jan               |                           | 0.0                                | 91.5         | 0.25              |              |                   |                   |
| Wed 03 Jan               | 1                         | 11.5                               | 88.7         | 0.27              | 94.2         | 0.56              |                   |
| Thu 04 Jan               | 1                         | 11.3                               | 84.1         | 0.24              | 93.7         | 0.21              |                   |
| Fri 05 Jan               | 1                         | 8.4                                | 88.3         | 0.18              | 94.0         | 0.22              |                   |
| Mon 08 Jan               | 3                         | 0.0                                | 91.0         | 0.18              | 95.2         | 0.53              |                   |
| Tue 09 Jan               | 1                         | 29.9                               | 85.5         | 0.19              | 94.2         | 0.33              |                   |
| Wed 10 Jan               | 1                         | 2.5                                | 89.8         | 0.39              | 95.0         | 0.43              |                   |
| Thu 11 Jan               | 1                         | 0.0                                | 90.0         | 0.57              | 94.6         | 0.29              |                   |
| Fri 12 Jan               | 1                         | 0.1                                | 91.4         | 0.25              | 96.0         | 0.27              |                   |
| Mon 15 Jan               | 3<br>1                    | 0.0                                | 93.4         | 0.29              | 96.0         | 0.53              |                   |
| Tue 16 Jan<br>Wed 17 Jan | 1                         | 0.0                                | 93.7         | 0.20              | 96.2         | 0.30              |                   |
| Thu 18 Jan               | 1                         | 18.0                               | 93.0         | 0.39              | 96.3         | 0.24              |                   |
| Fri 19 Jan               | 1                         | 10.8                               | 93.1         | 0.46              | 96.1         | 0.26              |                   |
| Mon 22 Jan               | 3                         | 22.5                               | 84.0         | 0.43              | 93.2         | 0.51              |                   |
| Tue 23 Jan               | 1                         | 16.0                               | 85.7         | 0.23              | 90.0         | 0.28              |                   |
| Wed 24 Jan               | 1                         | 7.9                                | 88.9         | 0.26              | 93.1         | 0.55              |                   |
| Thu 25 Jan               | 1                         | 17.1                               | 83.3         | 0.26              | 90.4         | 0.43              |                   |
| Fri 26 Jan               | 1                         | 10.8                               | 88.0         | 0.18              | 93.3         | 0.35              |                   |
| Mon 29 Jan               | 3                         | 10.6                               | 86.8         | 0.59              | 89.6         | 1.28              |                   |
| Tue 30 Jan               | 1                         | 10.6                               | 89.2         | 0.26              | 90.6         | 2.36              |                   |
| Wed 31 Jan               | 1                         | 21.5                               | 84.6         | 0.39              | 87.8         | 2.15              |                   |
| Thu 01 Feb               | 1                         | 38.8                               | 83.7         | 0.38              |              |                   |                   |
| Fri 02 Feb               | 1                         | 18.1                               | 84.3         | 0.33              |              |                   |                   |
| Sat 03 Feb               | 1                         | 0.0                                |              |                   |              |                   |                   |
| Sun 04 Feb               | 1                         | 0.0                                |              |                   |              |                   |                   |
| Mon 05 Feb               | 1                         | 0.0                                | 90.4         | 0.27              | 94.5         | 0.59              |                   |
| Thu 08 Feb               | 3                         | 0.0                                | 93.1         | 0.16              | 95.9         | 0.30              |                   |
| Fri 09 Feb               | 1                         | 0.0                                | 92.6         | 0.27              | 95.4         | 0.33              |                   |
| Mon 12 Feb               | 3                         | 22.1                               | 85.6         | 0.20              | 93.6         | 0.31              |                   |
| Tue 13 Feb               | 11                        | 0.1                                | 89.2         | 0.25              | 94.8         | 0.30              |                   |
| Wed 14 Feb               | 1                         | 0.0                                | 91.3         | 0.48              | 95.2         | 0.62              |                   |
| Thu 15 Feb               | 1                         | 0.0                                | 92.4         | 0.14              | 96.5         | 0.25              |                   |
| Fri 16 Feb<br>Tue 20 Feb | 4                         | 0.0<br>1.8                         | 91.2<br>93.4 | 0.30              | 95.9<br>96.0 | 0.40<br>0.45      |                   |
| Wed 21 Feb               | 1                         | 5.8                                | 93.4         | 0.33              | 96.7         | 0.43              |                   |
| Thu 22 Feb               | 1                         | 7.8                                | 87.9         | 0.36              | 96.3         | 0.51              |                   |
| Fri 23 Feb               | 1                         | 1.8                                | 90.2         | 0.30              | 96.6         | 0.33              |                   |
| Mon 26 Feb               | 3                         | 6.8                                | 90.9         | 0.19              | 96.4         | 0.22              |                   |
| Tue 27 Feb               | 1                         | 0.0                                | 92.2         | 0.30              | 96.4         | 0.59              |                   |
| Wed 28 Feb               | 1                         | 18.8                               | 92.0         | 0.24              | 96.0         | 0.42              |                   |
| Thu 29 Feb               | 1                         | 19.6                               | 88.2         | 0.40              | 94.6         | 0.32              |                   |
| Fri 01 Mar               | 1                         | 9.6                                | 90.9         | 0.21              | 95.2         | 0.48              |                   |
| Mon 04 Mar               | 3                         | 18.6                               | 93.1         | 0.31              | _            |                   |                   |
| Tue 05 Mar               | 1                         | 2.0                                | 93.2         | 0.33              |              |                   |                   |
| Wed 06 Mar               | 1                         | 0.3                                | 93.8         | 0.15              | 97.1         | 0.33              |                   |
| Thu 07 Mar               | 1                         | 0.6                                | 93.9         | 0.31              | 97.4         | 0.46              |                   |
| Fri 08 Mar               | 1                         | 7.5                                | 94.3         | 0.24              | 97.9         | 0.27              |                   |
| Mon 11 Mar               | 3                         | 16.5                               | 86.1         | 0.25              | 94.5         | 0.52              |                   |
| Tue 12 Mar               | 1                         | 17.0                               | 84.0         | 0.26              | 91.0         | 2.53              |                   |
| Wed 13 Mar               | 1                         | 2.3                                | 87.1         | 0.24              | 94.1         | 0.69              |                   |
| Thu 14 Mar               | 1                         | 1.0                                | 89.0         | 0.16              | 94.6         | 0.40              |                   |

| ER UVT (                 |                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DITY (> 1 ľ  | NTU FLAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a 0                      | 8                                                                           | HAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RVEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAGI         | NESIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALBERTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Days since<br>last sampl | Rain, 2-<br>station-<br>average/m                                           | WT/%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turbidity<br>/NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WVT/%        | Turbidity<br>/NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turbidity<br>/NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                        | 0.0                                                                         | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.5         | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                        | 0.0                                                                         | 89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.4         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 89.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                        | 0.0                                                                         | 90.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 5.5                                                                         | 90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.0         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.0         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.9         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                        | 0.3                                                                         | 93.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.4         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 10.3                                                                        | 89.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.1         | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.0         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.1         | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 5.1                                                                         | 90.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.6         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                        | 0.0                                                                         | 92.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.6         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.6                                                                         | 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.2         | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.5         | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.0         | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.4         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.1         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.0         | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                        | 0.0                                                                         | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92.0         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 91.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.2         | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.4         | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 90.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92.8         | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         | 92.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.2         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                        | 2.9                                                                         | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.8         | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 28.8                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 0.0                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.1         | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | _                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 1/.6                                                                        | 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.0         | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                        | 14.9                                                                        | 91.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.3         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 1 0.0 1 1 18.3 1 14.6 4 0.0 1 5.5 1 0.0 1 0.0 3 0.3 1 10.3 1 10.3 1 10.3 1 10.0 1 5.1 3 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 | HAND SAN   HARE   HAR | HAND SAMPLES | ## HAND SAMPLES    Part   Part | HARVEY   MAGNESIA   Fig. 2   Fig. 2 |

| RAW WA                   | TER UVT (                 | < 90% FLA<br>F                     | GGED) AI     |                   | DITY (> 1 ľ  | NTU FLAG          | GED)              |
|--------------------------|---------------------------|------------------------------------|--------------|-------------------|--------------|-------------------|-------------------|
|                          | e 'e                      | E                                  | HAR          | VEY               | MAGI         | NESIA             | ALBERTA           |
| 2024 workdays            | Days since<br>last sample | Rain, 2-<br>station-<br>average/mm | WVT/%        | Turbidity<br>/NTU | UVT/%        | Turbidity<br>/NTU | Turbidity<br>/NTU |
| Mon 03 Jun               | 3                         | 46.0                               | 86.6         | 0.37              | 87.4         | 1.65              |                   |
| Tue 04 Jun               | 1                         | 12.1                               | 87.8         | 0.24              | 82.7         | 3.01              |                   |
| Wed 05 Jun               | 1                         | 4.3                                | 91.8         | 0.22              | 86.1         | 2.55              |                   |
| Thu 06 Jun               | 1                         | 0.0                                | 91.5         | 0.21              | 93.7         | 0.44              |                   |
| Fri 07 Jun<br>Mon 10 Jun | 3                         | 0.0                                | 92.6<br>93.3 | 0.55<br>0.25      | 94.3<br>93.2 | 0.50<br>0.30      |                   |
| Tue 11 Jun               | 1                         | 2.5                                | 93.5         | 0.30              | 93.9         | 0.36              |                   |
| Wed 12 Jun               | 1                         | 1.5                                | 94.0         | 0.19              | 94.4         | 0.27              |                   |
| Thu 13 Jun               | 1                         | 0.0                                | 93.9         | 0.47              | 94.0         | 0.26              |                   |
| Fri 14 Jun               | 1                         | 0.0                                | 88.1         | 0.28              | 89.0         | 0.29              |                   |
| Mon 17 Jun               | 3                         | 2.4                                | 94.3         | 0.28              | 94.8         | 0.23              |                   |
| Tue 18 Jun               | 1                         | 1.4                                | 94.2         | 0.22              | 93.4         | 0.25              |                   |
| Wed 19 Jun               | 1                         | 0.0                                | 93.5         | 0.16              | 94.1         | 0.28              |                   |
| Thu 20 Jun               | 1                         | 0.0                                | 92.7         | 0.23              | 86.9         | 0.29              |                   |
| Fri 21 Jun               | 1                         | 0.0                                | 92.5         | 0.24              | 94.5         | 0.29              |                   |
| Mon 24 Jun               | 3                         | 0.0                                | 94.9         | 0.20              | 90.4         | 0.17              |                   |
| Tue 25 Jun               | 1                         | 0.0                                | 94.3         | 0.21              | 95.6         | 0.22              |                   |
| Wed 26 Jun               | 1                         | 0.0                                | 92.9         | 0.24              | 95.2         | 0.27              |                   |
| Thu 27 Jun<br>Fri 28 Jun | 1                         | 11.8<br>3.4                        | 93.7         | 0.35<br>0.24      | 93.8<br>93.9 | 0.32              |                   |
| Tue 02 Jul               | 4                         | 0.0                                | 94.9         | 0.24              | 95.4         | 0.33              |                   |
| Wed 03 Jul               | 1                         | 0.0                                | 95.3         | 0.23              | 95.6         | 0.27              |                   |
| Thu 04 Jul               | 1                         | 0.0                                | 94.0         | 0.26              | 95.3         | 0.40              |                   |
| Fri 05 Jul               | 1                         | 0.0                                | 94.6         | 0.33              | 95.2         | 0.27              |                   |
| Mon 08 Jul               | 3                         | 0.0                                | 94.7         | 0.20              | 95.0         | 0.18              |                   |
| Tue 09 Jul               | 1                         | 0.0                                | 89.8         | 2.24              | 95.0         | 0.31              |                   |
| Wed 10 Jul               | 1                         | 0.0                                | 93.4         | 0.22              | 94.6         | 0.36              |                   |
| Thu 11 Jul               | 1                         | 0.0                                | 95.2         | 0.25              | 95.1         | 0.29              |                   |
| Fri 12 Jul               | 1                         | 0.0                                | 95.6         | 0.25              | 96.2         | 0.44              |                   |
| Mon 15 Jul               | 3                         | 0.0                                | 95.0         | 0.26              | 95.5         | 0.18              |                   |
| Tue 16 Jul               | 1                         | 0.0                                | 95.0         | 0.20              | 95.7         | 0.20              |                   |
| Wed 17 Jul               | 1                         | 0.0                                | 96.4         | 0.32              | 95.3         | 0.24              |                   |
| Thu 18 Jul               | 1                         | 0.0                                | 94.5         | 0.44              | 95.9         | 0.25              |                   |
| Fri 19 Jul               | 1                         | 0.0                                | 94.5         | 0.24              | 95.1         | 0.23              |                   |
| Mon 22 Jul<br>Tue 23 Jul | <u>3</u>                  | 0.0                                | 95.1<br>96.1 | 0.63<br>0.24      | 96.6<br>96.6 | 0.38<br>0.25      |                   |
| Wed 24 Jul               | 1                         | 0.0                                | 94.1         | 0.24              | 95.4         | 0.23              |                   |
| Thu 25 Jul               | 1                         | 0.0                                | 95.9         | 0.31              | 96.4         | 0.36              |                   |
| Fri 26 Jul               | 1                         | 0.0                                | 96.2         | 0.22              | 96.9         | 0.79              |                   |
| Mon 29 Jul               | 3                         | 4.0                                | 95.5         | 0.23              | 96.3         | 0.26              |                   |
| Tue 30 Jul               | 1                         | 12.4                               | 94.3         | 0.31              | 96.9         | 0.25              |                   |
| Wed 31 Jul               | 1                         | 1.4                                | 93.7         | 0.23              | 95.2         | 1.25              | -                 |
| Thu 01 Aug               | 1                         | 2.3                                | 94.9         | 0.40              | 96.4         | 0.55              |                   |
| Fri 02 Aug               | 1                         | 0.0                                | 94.0         | 0.19              | 95.3         | 0.24              |                   |
| Tue 06 Aug               | 4                         | 0.0                                | 83.6         | 0.19              | 85.7         | 0.13              |                   |
| Wed 07 Aug               | 1                         | 0.0                                | 95.0         | 0.26              | 95.3         | 0.52              |                   |
| Thu 08 Aug               | 1                         | 0.0                                | 94.7<br>95.1 | 0.29              | 95.4         | 0.28              |                   |
| Fri 09 Aug<br>Mon 12 Aug | 3                         | 0.0<br>1.3                         | 94.9         | 0.21              | 95.3<br>96.1 | 0.21              |                   |
| Tue 13 Aug               | 1                         | 1.5                                | 94.9         | 0.28              | 96.1         | 0.31              |                   |
| Wed 14 Aug               | 1                         | 0.0                                | 94.6         | 0.28              | 95.7         | 0.43              |                   |
| Thu 15 Aug               | 1                         | 0.0                                | 94.9         | 0.26              | 94.2         | 0.77              |                   |
| Fri 16 Aug               | 1                         | 0.0                                | 95.0         | 0.16              | 95.2         | 0.24              |                   |
| Mon 19 Aug               | 3                         | 2.6                                | 95.6         | 0.39              | 96.4         | 0.34              |                   |

| RAW WA                   | TER UVT (                 | < 90% FLA                          | GGED) AI     |                   | DITY (> 1 I  | NTU FLAG          | GED)              |
|--------------------------|---------------------------|------------------------------------|--------------|-------------------|--------------|-------------------|-------------------|
|                          | a. (I)                    |                                    |              | VEY               | MAGI         | NESIA             | ALBERTA           |
| 2024 workdays            | Days since<br>last sample | Rain, 2-<br>station-<br>average/mm | %/tvn        | Turbidity<br>/NTU | %/±\n        | Turbidity<br>/NTU | Turbidity<br>/NTU |
| Tue 20 Aug               | 1                         | 3.4                                | 94.7         | 0.57              | 96.5         | 0.62              |                   |
| Wed 21 Aug               | 1                         | 1.1                                | 94.8         | 0.22              | 96.7         | 0.37              |                   |
| Thu 22 Aug               | 1                         | 8.9                                | 88.3         | 0.61              | 94.0         | 0.86              |                   |
| Fri 23 Aug               | 1                         | 4.5                                | 93.3         | 0.22              | 96.5         | 0.22              | 1.44              |
| Mon 26 Aug               | 3                         | 1.4                                | 93.7         | 0.20              | 96.7         | 0.24              | 0.69              |
| Tue 27 Aug               | 1                         | 10.9                               | 88.9         | 0.37              | 94.9         | 0.31              | 0.52              |
| Wed 28 Aug               | 1                         | 0.8                                | 93.1         | 0.31              | 95.4         | 0.43              | 0.41              |
| Thu 29 Aug               | 1                         | 0.6                                | 93.8         | 0.32              | 95.7         | 0.26              | 0.57              |
| Fri 30 Aug               | 1                         | 0.0                                | 94.2         | 0.46              | 96.2         | 0.40              | 1.75              |
| Tue 03 Sep               | 4                         | 0.0                                | 94.6         | 0.28              | 93.8         | 0.53              | 1.05              |
| Wed 04 Sep               | 1                         | 0.3                                | 95.0         | 0.32              | 96.4         | 0.50              | 1.95              |
| Thu 05 Sep               | 1                         | 0.3                                | 95.2<br>95.7 | 0.23<br>0.22      | 96.5<br>96.5 | 0.21              | 0.48              |
| Fri 06 Sep<br>Mon 09 Sep | 3                         | 0.0                                | 95.7         | 0.22              | 96.8         | 0.22              | 0.63<br>0.44      |
| Tue 10 Sep               | 1                         | 0.0                                | 95.8         | 0.17              | 96.2         | 0.26              | 0.42              |
| Wed 11 Sep               | 1                         | 1.8                                | 95.5         | 0.18              | 96.4         | 0.30              | 0.53              |
| Thu 12 Sep               | 1                         | 0.1                                | 94.6         | 0.18              | 96.3         | 0.30              | 0.57              |
| Fri 13 Sep               | 1                         | 0.0                                | 94.6         | 0.41              | 96.4         | 0.48              | 0.46              |
| Mon 16 Sep               | 3                         | 0.0                                | 93.8         | 0.29              | 95.8         | 0.25              | 0.57              |
| Tue 17 Sep               | 1                         | 0.0                                | 94.8         | 0.23              | 96.3         | 0.27              | 0.36              |
| Wed 18 Sep               | 1                         | 0.0                                | 94.9         | 0.46              | 96.5         | 0.43              | 0.79              |
| Thu 19 Sep               | 1                         | 0.0                                | 95.2         | 0.47              | 96.9         | 0.31              | 0.45              |
| Fri 20 Sep               | 1                         | 0.0                                | 96.0         | 0.47              | 97.3         | 0.41              | 0.45              |
| Mon 23 Sep               | 3                         | 7.5                                | 95.2         | 0.44              | 96.4         | 0.45              | 0.47              |
| Tue 24 Sep               | 1                         | 0.6                                | 95.6         | 0.55              | 96.6         | 0.60              | 0.53              |
| Wed 25 Sep               | 1                         | 16.4                               | 89.9         | 0.53              | 91.2         | 0.61              | 1.03              |
| Thu 26 Sep               | 1                         | 21.9                               | 89.3         | 0.58              | 93.1         | 0.71              | 0.6               |
| Fri 27 Sep               | 1                         | 4.9                                | 90.5         | 0.32              | 93.3         | 0.35              |                   |
| Tue 01 Oct               | 4                         | 0.0                                | 94.8         | 0.43              | 95.9         | 0.47              | 0.47              |
| Wed 02 Oct               | 1                         | 1.3                                | 95.0         | 0.46              | 96.4         | 0.60              | 0.55              |
| Thu 03 Oct               | 1                         | 0.0                                | 92.7         | 0.29              | 96.6         | 0.25              | 0.51              |
| Fri 04 Oct               | 1                         | 22.3                               | 84.6         | 0.66              | 93.1         | 0.47              | 5.55              |
| Mon 07 Oct               | 3                         | 0.0                                | 94.3         | 0.37              | 96.4         | 0.39              | 2.23              |
| Tue 08 Oct               | 1                         | 3.3                                | 93.6         | 0.37              | 95.2         | 0.34              | 2.14              |
| Wed 09 Oct               | 1                         | 0.9                                | 92.3         | 0.45              | 94.7         | 0.50              | 0.70              |
| Thu 10 Oct               | 1                         | 9.0                                | 92.5         | 0.46              | 95.6         | 0.40              | 1.72              |
| Fri 11 Oct               | 1                         | 0.0                                | 94.2         | 0.74              | 96.5         | 0.54              | 1.60              |
| Tue 15 Oct               | 4                         | 17.4                               | 90.4         | 0.81              | 90.0         | 0.76              | 1.21              |
| Wed 16 Oct<br>Thu 17 Oct | 1                         | 7.6<br>3.9                         | 91.0<br>89.8 | 0.23              | 94.7         | 0.61              | 1.32<br>1.28      |
| Fri 18 Oct               | 1                         | 0.0                                | 90.5         | 0.21              | 94.5<br>94.0 | 0.23<br>0.75      | 1.36              |
| Mon 21 Oct               | 3                         | 20.9                               | 87.7         | 0.28              | 82.5         | 1.13              | 0.52              |
| Tue 22 Oct               | 1                         | 0.0                                | 89.5         | 0.38              | 92.4         | 0.53              | 0.46              |
| Wed 23 Oct               | 1                         | 0.4                                | 90.4         | 0.50              | 94.1         | 0.48              | 0.35              |
| Thu 24 Oct               | 1                         | 0.0                                | 93.2         | 0.62              | 95.3         | 0.42              | 0.37              |
| Fri 25 Oct               | 1                         | 0.0                                | 91.7         | 0.24              | 94.9         | 0.42              | 0.73              |
| Mon 28 Oct               | 3                         | 14.0                               | 87.1         | 0.71              | 91.7         | 0.81              | 0.34              |
| Tue 29 Oct               | 1                         | 1.8                                | 89.2         | 0.76              | 92.5         | 0.83              | 0.50              |
| Wed 30 Oct               | 1                         | 0.9                                | 90.2         | 0.47              | 93.0         | 0.28              | 0.31              |
| Thu 31 Oct               | 1                         | 29.3                               | 79.3         | 2.64              | 90.8         | 0.33              | 0.38              |
| Fri 01 Nov               | 1                         | 11.8                               | 82.1         | 0.34              | 92.4         | 0.60              |                   |
| Mon 04 Nov               | 3                         | 6.3                                | 73.6         | 0.60              | 93.3         | 0.36              |                   |
| Tue 05 Nov               | 1                         | 31.5                               | 87.7         | 0.30              | 92.1         | 0.47              |                   |
| Wed 06 Nov               | 1                         | 0.0                                | 90.1         | 0.56              | 94.0         | 0.28              |                   |

| RAW WA        | TER UVT (                 | < 90% FLA                          | GGED) AI |                   | DITY (> 1 I | NTU FLAG          | GED)              |
|---------------|---------------------------|------------------------------------|----------|-------------------|-------------|-------------------|-------------------|
|               | A)                        | Я                                  | HAR      | VEY               | MAG         | NESIA             | ALBERTA           |
| 2024 workdays | Days since<br>last sample | Rain, 2-<br>station-<br>average/mm | %/±/\n   | Turbidity<br>/NTU | %/±\n       | Turbidity<br>/NTU | Turbidity<br>/NTU |
| Thu 07 Nov    | 1                         | 0.5                                | 89.8     | 0.27              | 94.3        | 0.41              |                   |
| Fri 08 Nov    | 1                         | 0.0                                | 88.0     | 0.31              | 88.1        | 0.28              |                   |
| Tue 12 Nov    | 4                         | 19.1                               | 83.5     | 0.37              | 77.0        | 4.46              |                   |
| Wed 13 Nov    | 1                         | 58.4                               | 79.5     | 0.47              | 91.0        | 0.77              |                   |
| Thu 14 Nov    | 1                         | 28.9                               | 84.9     | 0.37              | 88.1        | 1.57              |                   |
| Fri 15 Nov    | 1                         | 0.8                                | 88.6     | 0.22              | 92.1        | 0.51              |                   |
| Mon 18 Nov    | 3                         | 4.0                                | 88.3     | 0.21              | 93.3        | 0.25              |                   |
| Tue 19 Nov    | 1                         | 15.0                               | 90.7     | 0.34              | 94.1        | 0.27              |                   |
| Wed 20 Nov    | 1                         | 36.8                               | 81.5     | 0.38              | 93.2        | 0.32              |                   |
| Thu 21 Nov    | 1                         | 25.8                               | 83.6     | 0.18              | 91.9        | 0.30              |                   |
| Fri 22 Nov    | 1                         | 0.9                                | 86.1     | 0.24              | 92.4        | 0.40              |                   |
| Mon 25 Nov    | 3                         | 3.0                                | 88.4     | 0.29              | 93.0        | 0.23              |                   |
| Tue 26 Nov    | 1                         | 0.0                                | 89.8     | 0.26              | 93.3        | 0.31              |                   |
| Wed 27 Nov    | 1                         | 0.0                                | 91.2     | 0.35              | 95.1        | 0.36              |                   |
| Thu 28 Nov    | 1                         | 0.0                                | 91.2     | 0.24              | 94.6        | 0.28              |                   |
| Fri 29 Nov    | 1                         | 0.0                                | 91.8     | 0.23              | 94.8        | 0.19              |                   |
| Mon 02 Dec    | 3                         | 0.0                                | 90.9     | 0.38              | 94.6        | 0.32              |                   |
| Tue 03 Dec    | 1                         | 0.0                                | 91.0     | 0.20              | 94.2        | 0.28              |                   |
| Wed 04 Dec    | 1                         | 0.0                                | 90.3     | 0.37              | 94.7        | 0.22              |                   |
| Thu 05 Dec    | 1                         | 0.0                                | 89.6     | 0.24              | 94.3        | 0.19              |                   |
| Fri 06 Dec    | 1                         | 0.1                                | 89.6     | 0.14              | 94.7        | 0.26              |                   |
| Mon 09 Dec    | 3                         | 0.1                                | 90.2     | 0.15              | 93.0        | 0.22              |                   |
| Tue 10 Dec    | 1                         | 0.0                                | 91.2     | 0.17              | 94.5        | 0.31              |                   |
| Wed 11 Dec    | 1                         | 0.0                                | 91.9     | 0.17              | 95.0        | 0.18              |                   |
| Thu 12 Dec    | 1                         | 0.0                                | 92.0     | 0.22              | 95.3        | 0.27              |                   |
| Fri 13 Dec    | 1                         | 0.5                                | 92.1     | 0.23              | 94.6        | 0.24              |                   |
| Mon 16 Dec    | 3                         | 0.6                                | 89.9     | 0.24              | 93.8        | 0.18              |                   |
| Tue 17 Dec    | 1                         | 4.0                                | 91.0     | 0.22              | 94.8        | 0.31              |                   |
| Wed 18 Dec    | 1                         | 78.4                               | 84.8     | 0.28              | 89.1        | 0.34              |                   |
| Thu 19 Dec    | 1                         | 1.1                                | 90.2     | 0.17              | 92.6        | 0.29              |                   |
| Fri 20 Dec    | 1                         | 14.9                               | 89.9     | 0.19              | 90.6        | 0.50              |                   |
| Mon 23 Dec    | 3                         | 24.6                               | 87.5     | 0.47              | 88.6        | 0.47              |                   |
| Fri 27 Dec    | 4                         | 22.3                               | 88.6     | 0.21              | 92.5        | 0.31              |                   |
| Mon 30 Dec    | 3                         | 15.0                               | 90.0     | 0.21              | 94.3        | 0.23              |                   |
| Tue 31 Dec    | 1                         | 3.9                                | 90.9     | 0.24              | 93.6        | 0.32              |                   |
| COUNT         |                           |                                    | 244      | 244               | 240         | 240               | 45                |
| MIN           |                           |                                    | 73.60    | 0.14              | 77.00       | 0.13              | 0.31              |
| MAX           |                           |                                    | 98.30    | 2.64              | 97.90       | 4.46              | 5.55              |
| MED           |                           |                                    | 92.20    | 0.26              | 95.00       | 0.33              | 0.55              |
| AVG           |                           |                                    | 91.27    | 0.32              | 94.27       | 0.45              | 0.90              |

## APPENDIX 4: TREATED WATER TURBIDITY & CHLORINE RESIDUAL

|               |                 | SAMPLE LO     | CATION (          | SOURCED             | FROM EI     | THER THE      |          | <mark>'ALBERTA</mark><br>ITU IS FLA |          | _               |                          |               | BASED ON | N OPERAT      | IONAL NE       | EDS). TU      | RBIDITY          |
|---------------|-----------------|---------------|-------------------|---------------------|-------------|---------------|----------|-------------------------------------|----------|-----------------|--------------------------|---------------|----------|---------------|----------------|---------------|------------------|
| Š             | t sample        | HARVEY<br>TAN |                   | PR'<br>(HIGH<br>TAI | <b>IWAY</b> |               | Z/CAFÉ   | LIONS B<br>(CUL-D                   | AY AVE.  | KELVIN<br>(WORK | GROVE<br>(S YARD<br>IDE) | MAG.<br>TA    |          | 1             | NORTH<br>/IEW) | BCH (C        | SWICK<br>CUL-DE- |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L          | Turbidity/NTU       | CL2/mg/L    | Turbidity/NTU | CL2/mg/L | Turbidity/NTU                       | CL2/mg/L | Turbidity/NTU   | CL2/mg/L                 | Turbidity/NTU | CL2/mg/L | Turbidity/NTU | CL2/mg/L       | Turbidity/NTU | CL2/mg/L         |
| 02-Jan        |                 | 0.41          | 0.88              | 0.31                | 0.80        | 0.36          | 0.69     | 0.25                                | 0.59     | 0.23            | 0.74                     |               |          | 0.25          | 0.71           | 0.24          | 0.60             |
| 03-Jan        | 1               | 0.27          | 0.84              | 0.26                | 0.76        | 0.30          | 0.91     | 0.29                                | 0.59     | 0.31            | 0.56                     | 1.05          | 0.84     | 0.79          | 0.74           | 0.32          | 0.61             |
| 04-Jan        | 1               | 0.17          | 0.81              | 0.15                | 0.76        | 0.24          | 0.64     | 0.12                                | 0.56     | 0.13            | 0.42                     | 0.36          | 1.05     | 0.19          | 0.69           | 0.17          | 0.55             |
| 05-Jan        | 1               | 0.31          | 0.95              | 0.24                | 0.86        | 0.26          | 0.69     | 0.24                                | 0.53     | 0.18            | 0.32                     | 0.31          | 0.82     | 0.19          | 0.74           | 0.17          | 0.50             |
| 08-Jan        | 3               | 0.26          | 0.89              | 0.20                | 0.83        | 0.23          | 0.71     | 0.19                                | 0.62     | 0.22            | 0.21                     | 0.58          | 0.89     | 0.15          | 0.76           | 0.15          | 0.59             |
| 09-Jan        | 1               | 0.39          | 0.82              | 0.25                | 0.78        | 0.41          | 0.71     | 0.12                                | 0.68     | 0.34            | 0.52                     | 0.43          | 0.82     | 0.15          | 0.67           | 0.28          | 0.68             |
| 10-Jan        | 1               | 0.27          | 0.87              | 0.86                | 0.78        | 0.42          | 0.64     | 0.69                                | 0.60     | 0.26            | 0.39                     | 0.80          | 0.82     | 0.78          | 0.71           | 0.36          | 0.72             |
| 11-Jan        | 1               | 0.50          | <mark>0.89</mark> | 0.29                | 0.85        | 0.16          | 0.73     | 0.19                                | 0.56     | 0.14            | 0.70                     | 0.68          | 0.84     | 0.21          | 0.74           | 0.35          | 0.65             |
| 12-Jan        | 1               | 0.22          | 0.86              | 0.15                | 0.89        | 0.19          | 0.72     | 0.16                                | 0.71     | 0.14            | 0.36                     | 0.18          | 0.91     | 0.16          | 0.78           | 0.27          | 0.70             |
| 15-Jan        | 3               | 0.49          | 0.86              | 0.43                | 0.81        | 0.40          | 0.75     | 0.20                                | 0.78     | 0.12            | 0.45                     | 0.78          | 0.87     | 0.14          | 0.76           | 0.28          | 0.73             |
| 16-Jan        | 1               | 0.43          | <mark>0.87</mark> | 0.26                | 0.84        | 0.20          | 0.74     | 0.25                                | 0.77     | 0.15            | 0.66                     | 0.25          | 0.92     | 0.19          | 0.81           | 0.26          | 0.71             |
| 17-Jan        | 1               | <u> </u>      |                   | 0.82                | 0.35        | 0.72          | 0.34     | 0.78                                | 0.26     | 0.60            | 0.19                     |               |          | 0.18          | 0.69           | 0.21          | 0.77             |
| 18-Jan        | 1               | 0.57          | 0.88              | 0.27                | 0.86        | 0.61          | 0.74     | 0.14                                | 0.77     | 0.21            | 0.57                     | 0.29          | 0.85     | 0.15          | 0.76           | 0.26          | 0.71             |
| 19-Jan        | 1               | 0.66          | 0.88              | 0.31                | 0.91        | 0.44          | 0.80     | 0.18                                | 0.78     | 0.41            | 0.49                     | 0.69          | 0.86     | 0.28          | 0.80           | 0.50          | 0.73             |
| 22-Jan        | 3               | 0.51          | 0.84              | 0.76                | 0.74        | 0.68          | 0.67     | 0.30                                | 0.59     | 0.20            | 0.34                     | 0.81          | 0.74     | 0.25          | 0.77           | 0.56          | 0.65             |
| 23-Jan        | 1               | 0.30          | 0.90              | 0.29                | 0.79        | 0.27          | 0.75     | 0.23                                | 0.52     | 0.39            | 0.49                     | 0.36          | 0.85     | 0.21          | 0.75           | 0.37          | 0.48             |
| 24-Jan        | 1               | 0.58          | 0.85              | 0.40                | 0.80        | 0.76          | 0.68     | 0.26                                | 0.46     | 0.26            | 0.29                     | 0.78          | 0.77     | 0.28          | 0.67           | 0.68          | 0.68             |
| 25-Jan        | 1               | 0.55          | 0.83              | 0.58                | 0.81        | 0.42          | 0.64     | 0.31                                | 0.49     | 0.26            | 0.40                     | 0.63          | 0.92     | 0.21          | 0.71           | 0.58          | 0.73             |
| 26-Jan        | 1               | 0.77          | 0.87              | 0.53                | 0.84        | 0.67          | 0.41     | 0.23                                | 0.51     | 0.29            | 0.34                     | 0.46          | 0.88     | 0.36          | 0.70           | 0.34          | 0.69             |
| 29-Jan        | 3               | 0.79          | 0.92              | 0.52                | 0.80        | 1.04          | 0.73     | 0.36                                | 0.54     | 0.29            | 0.33                     | 2.08          | 0.59     | 0.32          | 0.83           | 0.56          | 0.56             |
| 30-Jan        | 1               | 1.10          | 0.85              | 0.57                | 0.76        | 0.76          | 0.68     | 0.35                                | 0.61     | 0.29            | 0.53                     |               |          | 0.28          | 0.72           | 0.54          | 0.56             |
| 31-Jan        | 1               | 0.91          | 0.87              | 0.72                | 0.79        | 0.87          | 0.68     | 0.35                                | 0.52     | 0.66            | 0.47                     | 1.40          | 1.10     | 0.49          | 0.73           | 0.58          | 0.55             |
| 01-Feb        | 1               | 1.65          | 0.86              | 0.65                | 0.80        | 0.84          | 0.59     | 0.34                                | 0.57     | 0.23            | 0.48                     | 1.89          | 0.75     | 0.30          | 0.64           | 0.77          | 0.53             |
| 02-Feb        | 1               | 0.95          | 0.89              | 0.56                | 0.86        | 0.68          | 0.67     | 0.29                                | 0.44     | 0.22            | 0.36                     |               |          | 0.27          | 0.79           | 0.53          | 0.50             |
| 03-Feb        | 1               | 0.62          | 0.88              | 0.35                | 0.79        | 0.55          | 0.70     | 0.20                                | 0.62     | 0.39            | 0.73                     | 1.12          | 0.88     | 0.19          | 0.78           | 0.32          | 0.66             |
| 04-Feb        | 1               | 0.81          | 0.83              | 0.52                | 0.78        | 0.58          | 0.65     | 0.28                                | 0.61     | 0.31            | 0.58                     | 0.67          | 0.87     | 0.31          | 0.75           | 0.44          | 0.46             |
| 05-Feb        | 1               | 0.73          | 0.89              | 0.54                | 0.82        | 0.67          | 0.73     | 0.24                                | 0.58     | 0.21            | 0.43                     | 0.56          | 0.87     | 0.18          | 0.76           | 0.29          | 0.64             |
| 08-Feb        | 3               | 0.48          | 0.87              | 0.37                | 0.87        | 0.59          | 0.72     | 0.22                                | 0.63     | 0.17            | 0.43                     | 0.38          | 0.88     | 0.17          | 0.77           | 0.19          | 0.67             |
| 09-Feb        | 1               | 0.32          | 0.87              | 0.23                | 0.82        | 0.26          | 0.70     | 0.20                                | 0.67     | 0.16            | 0.63                     | 0.43          | 0.84     | 0.20          | 0.76           | 0.22          | 0.65             |
| 12-Feb        | 3               | 0.23          | 0.83              | 0.22                | 0.78        | 0.22          | 0.69     | 0.24                                | 0.69     | 0.19            | 0.35                     | 0.29          | 0.87     | 0.19          | 0.71           | 0.17          | 0.66             |
| 13-Feb        | 1               | 0.85          | 0.93              | 0.45                | 0.89        | 0.42          | 0.79     | 0.22                                | 0.54     | 0.25            | 0.53                     | 0.45          | 0.85     | 0.22          | 0.82           | 0.27          | 0.55             |
| 14-Feb        | 1               | 0.54          | <mark>0.87</mark> | 0.34                | 0.79        | 0.38          | 0.71     | 0.31                                | 0.60     | 0.23            | 0.59                     | 0.52          | 0.88     | 0.21          | 0.80           | 0.32          | 0.61             |
| 15-Feb        | 1               | 0.55          | <mark>0.90</mark> | 0.35                | 0.83        | 0.40          | 0.75     | 0.16                                | 0.64     | 0.17            | 0.52                     | 0.40          | 0.88     | 0.15          | 0.82           | 0.18          | 0.62             |
| 16-Feb        | 1               | 0.38          | 0.89              | 0.38                | 0.84        | 0.37          | 0.78     | 0.14                                | 0.63     | 0.16            | 0.35                     | 0.13          | 0.90     | 0.15          | 0.81           | 0.49          | 0.65             |

|               |                 | SAMPLE L      | OCATION (     | SOURCED             | FROM EI  | THER THE      |                 | <mark>/ALBERTA</mark><br>NTU IS FLA |                     | _             |                          |               | BASED ON    | N OPERAT      | IONAL NE        | EDS). TU      | RBIDITY                 |
|---------------|-----------------|---------------|---------------|---------------------|----------|---------------|-----------------|-------------------------------------|---------------------|---------------|--------------------------|---------------|-------------|---------------|-----------------|---------------|-------------------------|
| S             | t sample        |               | / PLANT<br>NK | PR\<br>(HIGH<br>TAN | IWAY     |               | E/CAFÉ<br>SIDE) |                                     | BAY AVE.<br>DE-SAC) |               | GROVE<br>(S YARD<br>IDE) | MAG.<br>TA    | PLANT<br>NK |               | (NORTH<br>/IEW) | BCH (C        | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L      | Turbidity/NTU       | CL2/mg/L | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU                       | CL2/mg/L            | Turbidity/NTU | CL2/mg/L                 | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L                |
| 20-Feb        | 4               | 0.37          | 0.86          | 0.47                | 0.78     | 0.66          | 0.75            | 0.16                                | 0.70                | 0.16          | 0.22                     | 0.50          | 0.90        | 0.19          | 0.79            | 0.32          | 0.66                    |
| 21-Feb        | 1               | 0.34          | 0.87          | 0.18                | 0.83     | 0.28          | 0.74            | 0.20                                | 0.67                | 0.16          | 0.58                     | 0.49          | 0.87        | 0.18          | 0.82            | 0.22          | 0.67                    |
| 22-Feb        | 1               | 0.35          | 0.82          | 0.26                | 0.74     | 0.55          | 0.65            | 0.14                                | 0.66                | 0.13          | 0.55                     | 0.53          | 0.81        | 0.16          | 0.73            | 0.37          | 0.64                    |
| 23-Feb        | 1               | 0.30          | 0.83          | 0.22                | 0.78     | 0.47          | 0.71            | 0.18                                | 0.60                | 0.18          | 0.62                     | 0.24          | 0.93        | 0.18          | 0.84            | 0.17          | 0.59                    |
| 26-Feb        | 3               | 0.43          | 0.90          | 0.21                | 0.85     | 0.23          | 0.75            | 0.14                                | 0.65                | 0.24          | 0.69                     | 0.29          | 0.87        | 0.19          | 0.80            | 0.21          | 0.73                    |
| 27-Feb        | 1               | 0.40          | 0.92          | 0.39                | 0.88     | 0.28          | 0.82            | 0.24                                | 0.62                | 0.16          | 0.80                     | 0.37          | 0.95        | 0.23          | 0.85            | 0.25          | 0.72                    |
| 28-Feb        | 1               | 0.33          | 0.90          | 0.30                | 0.86     | 0.46          | 0.81            | 0.19                                | 0.74                | 0.53          | 0.78                     | 0.48          | 0.90        | 0.20          | 0.83            | 0.29          | 0.79                    |
| 29-Feb        | 1               | 0.32          | 0.83          | 0.26                | 0.76     | 0.27          | 0.76            | 0.31                                | 0.77                | 0.31          | 0.69                     | 0.45          | 0.85        | 0.20          | 0.72            | 0.31          | 0.73                    |
| 01-Mar        | 1               | 0.35          | 0.96          | 0.23                | 0.95     | 0.30          | 0.85            | 0.21                                | 0.65                | 0.26          | 0.53                     | 0.28          | 0.79        | 0.16          | 0.92            | 0.25          | 0.71                    |
| 04-Mar        | 3               | 0.35          | 0.87          | 0.64                | 0.90     | 0.40          | 0.79            | 0.15                                | 0.70                | 0.13          | 0.71                     |               |             | 0.28          | 0.86            | 0.35          | 0.71                    |
| 05-Mar        | 1               | 0.67          | 0.89          | 0.24                | 0.86     | 0.43          | 0.83            | 0.16                                | 0.68                | 0.17          | 0.66                     |               |             | 0.15          | 0.86            | 0.17          | 0.72                    |
| 06-Mar        | 1               | 0.28          | 0.88          | 0.29                | 0.90     | 0.32          | 0.81            | 0.17                                | 0.72                | 0.12          | 0.70                     | 0.35          | 0.87        | 0.13          | 0.85            | 0.31          | 0.73                    |
| 07-Mar        | 1               | 0.49          | 0.88          | 0.21                | 0.89     | 0.41          | 0.68            | 0.18                                | 0.72                | 0.29          | 0.73                     | 0.26          | 0.90        | 0.21          | 0.86            | 0.41          | 0.71                    |
| 08-Mar        | 1               | 0.30          | 0.87          | 0.18                | 0.92     | 0.31          | 0.86            | 0.15                                | 0.74                | 0.16          | 0.83                     | 0.25          | 0.90        | 0.19          | 0.84            | 0.15          | 0.76                    |
| 11-Mar        | 3               | 0.77          | 0.87          | 0.48                | 0.75     | 0.71          | 0.72            | 0.35                                | 0.65                | 0.16          | 0.50                     | 0.76          | 0.84        | 0.22          | 0.77            | 0.48          | 0.62                    |
| 12-Mar        | 1               | 0.38          | 0.85          | 0.41                | 0.84     | 0.30          | 0.72            | 0.19                                | 0.54                | 0.16          | 0.50                     | 2.68          | 0.82        | 0.23          | 0.81            | 0.63          | 0.56                    |
| 13-Mar        | 1               | 1.18          | 0.86          | 0.39                | 0.88     | 0.33          | 0.76            | 0.18                                | 0.53                | 0.19          | 0.47                     | 1.91          | 0.88        | 0.31          | 0.86            | 0.25          | 0.54                    |
| 14-Mar        | 1               | 0.19          | 0.89          | 0.21                | 0.81     | 0.19          | 0.73            | 0.27                                | 0.45                | 0.37          | 0.34                     | 1.21          | 0.87        | 0.24          | 0.77            | 0.28          | 0.53                    |
| 15-Mar        | 1               | 0.33          | 0.92          | 0.28                | 0.94     | 0.18          | 0.94            | 0.26                                | 0.54                | 0.37          | 0.40                     | 0.86          | 0.93        | 0.29          | 0.85            | 0.16          | 0.65                    |
| 18-Mar        | 3               | 0.39          | 0.85          | 0.27                | 0.79     | 0.21          | 0.71            | 0.18                                | 0.55                | 0.17          | 0.48                     | 0.83          | 0.90        | 0.17          | 0.80            | 0.25          | 0.64                    |
| 19-Mar        | 1               | 0.42          | 0.86          | 0.20                | 0.86     | 0.22          | 0.73            | 0.15                                | 0.57                | 0.15          | 0.58                     | 0.56          | 0.83        | 0.15          | 0.82            | 0.16          | 0.63                    |
| 20-Mar        | 1               | 0.53          | 0.89          | 0.49                | 0.85     | 0.34          | 0.73            | 0.20                                | 0.57                | 0.16          | 0.45                     | 0.45          | 0.85        | 0.19          | 0.82            | 0.17          | 0.60                    |
| 21-Mar        | 1               | 0.70          | 0.90          | 0.34                | 0.89     | 0.35          | 0.75            | 0.16                                | 0.60                | 0.14          | 0.47                     | 0.43          | 0.94        | 0.14          | 0.84            | 0.21          | 0.65                    |
| 22-Mar        | 1               | 0.44          | 0.81          | 0.26                | 0.81     | 0.57          | 0.72            | 0.15                                | 0.62                | 0.14          | 0.70                     | 0.38          | 0.89        | 0.36          | 0.81            | 0.35          | 0.70                    |
| 25-Mar        | 3               | 0.73          | 0.92          | 0.18                | 0.88     | 0.29          | 0.86            | 0.18                                | 0.64                | 0.19          | 0.40                     | 0.49          | 0.92        | 0.19          | 0.85            | 0.33          | 0.69                    |
| 26-Mar        | 1               | 0.43          | 0.87          | 0.21                | 0.85     | 0.39          | 0.73            | 0.16                                | 0.68                | 0.15          | 0.52                     | 0.34          | 0.90        | 0.12          | 0.82            | 0.27          | 0.70                    |
| 27-Mar        | 1               | 0.44          | 0.88          | 0.25                | 0.85     | 0.33          | 0.73            | 0.18                                | 0.65                | 0.12          | 0.53                     | 0.37          | 0.84        | 0.19          | 0.81            | 0.26          | 0.66                    |
| 28-Mar        | 1               | 0.31          | 0.86          | 0.23                | 0.77     | 0.20          | 0.63            | 0.16                                | 0.62                | 0.32          | 0.46                     | 0.38          | 0.81        | 0.24          | 0.65            | 0.17          | 0.66                    |
| 29-Mar        | 1               | 0.33          | 0.82          | 0.21                | 0.79     | J.20          | <u> </u>        | 0.25                                | 0.55                | 0.32          | 0.41                     | 0.41          | 0.85        | 0.24          | 0.76            | 0.23          | 0.52                    |
| 02-Apr        | 4               | 0.36          | 0.82          | 0.30                | 0.71     | 0.33          | 0.68            | 0.14                                | 0.54                | 0.17          | 0.64                     | 0.30          | 0.89        | 0.13          | 0.74            | 0.32          | 0.62                    |
| 03-Apr        | 1               | 0.24          | 0.87          | 0.39                | 0.84     | 0.38          | 0.69            | 0.16                                | 0.59                | 0.14          | 0.53                     | 0.45          | 0.81        | 0.15          | 0.78            | 0.23          | 0.57                    |
| 04-Apr        | 1               | 0.38          | 0.90          | 0.32                | 0.83     | 0.39          | 0.72            | 0.23                                | 0.57                | 0.23          | 0.41                     | 0.38          | 0.94        | 0.21          | 0.79            | 0.37          | 0.63                    |
| 05-Apr        | 1               | 0.33          | 0.84          | 0.30                | 0.85     | 0.26          | 0.66            | 0.15                                | 0.62                | 0.15          | 0.47                     | 0.41          | 0.84        | 0.17          | 0.77            | 0.18          | 0.62                    |
| 03-Apr        | 3               | 0.29          | 0.94          | 0.16                | 0.83     | 0.24          | 0.82            | 0.15                                | 0.65                | 0.13          | 0.60                     | 0.41          | 0.90        | 0.13          | 0.82            | 0.29          | 0.62                    |
| 09-Apr        | 1               | 0.46          | 0.85          | 0.34                | 0.78     | 0.29          | 0.68            | 0.16                                | 0.79                | 0.13          | 0.68                     | 0.41          | 0.93        | 0.13          | 0.80            | 0.25          | 0.70                    |
| 10-Apr        | 1               | 0.44          | 0.86          | 0.34                | 0.79     | 0.40          | 0.68            | 0.20                                | 0.67                | 0.13          | 0.51                     | 0.43          | 0.86        | 0.15          | 0.74            | 0.24          | 0.59                    |
| TO-Whi        | 1 1             | 0.44          | 0.80          | 0.54                | 0.75     | 0.40          | 0.00            | 0.20                                | 0.07                | 0.14          | 0.51                     | 0.43          | 0.80        | 0.13          | 0.74            | 0.24          | 0.33                    |

|               |                 | SAMPLE L      | OCATION (         | SOURCED             | FROM EI  | THER THE      | _               | <mark>/ALBERTA</mark><br>NTU IS FLA |                     | _             |                 |               | BASED ON    | N OPERAT      | IONAL NE       | EDS). TU      | RBIDITY                 |
|---------------|-----------------|---------------|-------------------|---------------------|----------|---------------|-----------------|-------------------------------------|---------------------|---------------|-----------------|---------------|-------------|---------------|----------------|---------------|-------------------------|
| S             | t sample        | HARVEY<br>TA  |                   | PR'<br>(HIGH<br>TAI | lWAY     |               | E/CAFÉ<br>SIDE) | LIONS B                             | BAY AVE.<br>DE-SAC) | KELVIN        | GROVE<br>S YARD | MAG.          | PLANT<br>NK |               | NORTH<br>(IEW) | BCH (C        | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L          | Turbidity/NTU       | CL2/mg/L | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU                       | CL2/mg/L            | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L       | Turbidity/NTU | CL2/mg/L                |
| 11-Apr        | 1               | 0.27          | 0.87              | 0.45                | 0.85     | 0.24          | 0.71            | 0.23                                | 0.55                | 0.17          | 0.41            | 0.27          | 0.83        | 0.22          | 0.77           | 0.31          | 0.58                    |
| 12-Apr        | 1               | 0.45          | 0.86              | 0.25                | 0.80     | 0.32          | 0.74            | 0.17                                | 0.63                | 0.29          | 0.47            | 0.42          | 0.84        | 0.18          | 0.77           | 0.38          | 0.63                    |
| 15-Apr        | 3               | 0.36          | <mark>0.85</mark> | 0.24                | 0.79     | 0.42          | 0.71            | 0.15                                | 0.59                | 0.16          | 0.50            | 0.35          | 0.85        | 0.18          | 0.79           | 0.22          | 0.65                    |
| 16-Apr        | 1               | 0.32          | 0.86              | 0.20                | 0.80     | 0.17          | 0.68            | 0.18                                | 0.62                | 0.22          | 0.50            | 0.38          | 0.78        | 0.27          | 0.76           | 0.17          | 0.61                    |
| 17-Apr        | 1               | 0.35          | 0.87              | 0.39                | 0.79     | 0.34          | 0.69            | 0.15                                | 0.62                | 0.13          | 0.46            | 0.18          | 0.90        | 0.11          | 0.76           | 0.14          | 0.62                    |
| 18-Apr        | 1               | 0.49          | 0.78              | 0.22                | 0.75     | 0.52          | 0.64            | 0.17                                | 0.60                | 0.14          | 0.35            | 0.34          | 0.87        | 0.16          | 0.74           | 0.22          | 0.63                    |
| 19-Apr        | 1               | 0.58          | 0.88              | 0.22                | 0.84     | 0.21          | 0.73            | 0.24                                | 0.63                | 0.20          | 0.65            | 0.41          | 0.84        | 0.17          | 0.82           | 0.14          | 0.59                    |
| 22-Apr        | 3               | 0.29          | 0.86              | 0.23                | 0.81     | 0.19          | 0.69            | 0.28                                | 0.67                | 0.14          | 0.52            | 0.19          | 0.80        | 0.16          | 0.80           | 0.16          | 0.67                    |
| 23-Apr        | 1               | 0.20          | 0.90              | 0.18                | 0.86     | 0.40          | 0.66            | 0.24                                | 0.65                | 0.15          | 0.50            | 0.33          | 0.94        | 0.17          | 0.81           | 0.16          | 0.68                    |
| 24-Apr        | 1               | 0.49          | 0.82              | 0.15                | 0.82     | 0.41          | 0.71            | 0.14                                | 0.67                | 0.25          | 0.72            | 0.28          | 0.89        | 0.17          | 0.82           | 0.23          | 0.78                    |
| 25-Apr        | 1               | 0.27          | 0.87              | 0.24                | 0.90     | 0.21          | 0.72            | 0.19                                | 0.65                | 0.23          | 0.75            | 0.38          | 0.81        | 0.21          | 0.81           | 0.21          | 0.71                    |
| 26-Apr        | 1               | 0.25          | 0.83              | 0.17                | 0.75     | 0.13          | 0.75            | 0.13                                | 0.62                | 0.20          | 0.51            | 0.24          | 0.84        | 0.16          | 0.70           | 0.26          | 0.68                    |
| 29-Apr        | 3               | 0.38          | 0.88              | 0.22                | 0.83     | 0.21          | 0.75            | 0.30                                | 0.55                | 0.30          | 0.36            | 0.28          | 0.88        | 0.19          | 0.78           | 0.18          | 0.55                    |
| 30-Apr        | 1               | 0.20          | 0.92              | 0.21                | 0.95     | 0.15          | 0.77            | 0.19                                | 0.59                | 0.20          | 0.57            | 0.22          | 0.80        | 0.24          | 0.81           | 0.22          | 0.62                    |
| 01-May        | 1               | 0.30          | 0.83              | 0.23                | 0.77     | 0.25          | 0.67            | 0.16                                | 0.65                | 0.14          | 0.44            | 0.32          | 0.81        | 0.13          | 0.76           | 0.67          | 0.69                    |
| 02-May        | 1               | 0.23          | 0.94              | 0.19                | 0.86     | 0.40          | 0.78            | 0.18                                | 0.55                | 0.13          | 0.29            | 0.23          | 0.91        | 0.54          | 0.68           | 0.21          | 0.71                    |
| 03-May        | 1               | 0.45          | 0.75              | 0.22                | 0.79     | 0.28          | 0.71            | 0.36                                | 0.71                | 0.26          | 0.73            | 0.26          | 0.88        | 0.13          | 0.83           | 0.39          | 0.78                    |
| 06-May        | 3               | 0.67          | 0.88              | 0.21                | 0.84     | 0.20          | 0.73            | 0.14                                | 0.67                | 0.16          | 0.58            | 0.29          | 0.74        | 0.31          | 0.76           | 0.20          | 0.76                    |
| 07-May        | 1               | 0.25          | 0.90              | 0.20                | 0.88     | 0.23          | 0.53            | 0.16                                | 0.65                | 0.20          | 0.50            | 0.43          | 0.88        | 0.19          | 0.72           | 0.24          | 0.61                    |
| 08-May        | 1               | 0.47          | 0.88              | 0.22                | 0.82     | 0.32          | 0.73            | 0.19                                | 0.68                | 0.22          | 0.57            | 0.36          | 1.09        | 0.28          | 1.02           | 0.26          | 0.73                    |
| 09-May        | 1               | 0.26          | 0.80              | 0.22                | 0.80     | 0.24          | 0.70            | 0.22                                | 0.62                | 0.17          | 0.42            | 0.30          | 1.07        | 0.22          | 1.03           | 0.27          | 0.93                    |
| 10-May        | 1               | 0.40          | 0.80              | 0.24                | 0.76     | 0.30          | 0.67            | 0.27                                | 0.66                | 0.21          | 0.54            | 0.43          | 0.96        | 0.25          | 0.74           | 0.34          | 0.84                    |
| 13-May        | 3               | 0.31          | 0.86              | 0.27                | 0.82     | 0.27          | 0.72            | 0.22                                | 0.63                | 0.26          | 0.39            | 0.36          | 0.79        | 0.17          | 0.77           | 0.25          | 0.63                    |
| 14-May        | 1               | 0.29          | 0.85              | 0.31                | 0.81     | 0.32          | 0.73            | 0.23                                | 0.65                | 0.21          | 0.42            | 0.37          | 0.89        | 0.29          | 0.75           | 0.33          | 0.73                    |
| 15-May        | 1               | 0.35          | 0.86              | 0.29                | 0.85     | 0.37          | 0.73            | 0.28                                | 0.60                | 0.43          | 0.37            | 0.58          | 0.86        | 1.08          | 0.80           | 0.46          | 0.75                    |
| 16-May        | 1               | 0.37          | 0.85              | 0.30                | 0.79     | 0.38          | 0.78            | 0.18                                | 0.57                | 0.17          | 0.60            | 0.44          | 0.82        | 0.28          | 0.75           | 0.45          | 0.74                    |
| 17-May        | 1               | 0.28          | 0.86              | 0.26                | 0.86     | 0.29          | 0.78            | 0.18                                | 0.60                | 0.21          | 0.61            | 0.27          | 0.85        | 0.23          | 0.79           | 0.33          | 0.72                    |
| 21-May        | 4               | 0.37          | 0.90              | 0.21                | 0.81     | 0.20          | 0.81            | 0.17                                | 0.60                | 0.28          | 0.53            | 0.35          | 0.87        | 0.21          | 0.75           | 0.25          | 0.76                    |
| 22-May        | 1               | 0.34          | 0.81              | 0.28                | 0.77     | 0.30          | 0.70            | 0.18                                | 0.64                | 0.33          | 0.43            | 0.45          | 0.84        | 0.19          | 0.81           | 0.49          | 0.76                    |
| 23-May        | 1               | 0.26          | 0.83              | 0.29                | 0.84     | 0.25          | 0.68            | 0.19                                | 0.57                | 0.27          | 0.49            | 0.42          | 0.77        | 0.35          | 0.71           | 1.42          | 0.70                    |
| 24-May        | 1               | 0.50          | 0.88              | 0.28                | 0.83     | 0.56          | 0.59            | 0.25                                | 0.58                | 0.22          | 0.44            | 0.41          | 0.94        | 0.28          | 0.89           | 0.58          | 0.67                    |
| 27-May        | 3               | 0.32          | 0.82              | 0.23                | 0.77     | 0.31          | 0.60            | 0.31                                | 0.65                | 0.21          | 0.55            | 0.32          | 0.87        | 0.29          | 0.83           | 0.25          | 0.70                    |
| 28-May        | 1               | 0.41          | 0.80              | 0.22                | 0.82     | 0.26          | 0.61            | 0.26                                | 0.57                | 0.25          | 0.35            | 0.38          | 0.86        | 0.21          | 0.81           | 0.24          | 0.73                    |
| 29-May        | 1               | 0.48          | 0.83              | 0.27                | 0.80     | 0.30          | 0.55            | 0.28                                | 0.58                | 0.23          | 0.34            | 0.50          | 0.81        | 0.30          | 0.77           | 0.32          | 0.67                    |
| 30-May        | 1               | 0.34          | 0.86              | 0.19                | 0.87     | 0.38          | 0.61            | 0.36                                | 0.53                | 0.24          | 0.28            | 0.46          | 0.93        | 0.29          | 0.87           | 0.29          | 0.60                    |
| 31-May        | 1               | 0.34          | 0.84              | 0.31                | 0.85     | 0.36          | 0.64            | 0.29                                | 0.66                | 0.26          | 0.65            | 0.39          | 0.83        | 0.32          | 0.81           | 0.26          | 0.73                    |

|               |                 | SAMPLE LO     | OCATION ( | SOURCED             | FROM EI  | THER THE      |                 | <mark>/ALBERTA</mark><br>NTU IS FLA |                     | _                      |          |               | BASED ON    | N OPERAT      | IONAL NE        | EDS). TU      | RBIDITY                 |
|---------------|-----------------|---------------|-----------|---------------------|----------|---------------|-----------------|-------------------------------------|---------------------|------------------------|----------|---------------|-------------|---------------|-----------------|---------------|-------------------------|
| S             | t sample        | HARVEY<br>TAN |           | PR\<br>(HIGH<br>TAI | IWAY     |               | E/CAFÉ<br>SIDE) | LIONS B                             | BAY AVE.<br>DE-SAC) | KELVIN<br>(WORK<br>INS |          | MAG.<br>TA    | PLANT<br>NK |               | (NORTH<br>/IEW) | BCH (C        | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L  | Turbidity/NTU       | CL2/mg/L | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU                       | CL2/mg/L            | Turbidity/NTU          | CL2/mg/L | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L                |
| 03-Jun        | 3               | 0.57          | 0.82      | 0.62                | 0.74     | 0.47          | 0.48            | 0.32                                | 0.61                | 0.28                   | 0.34     | 0.71          | 0.72        | 0.66          | 0.69            | 0.38          | 0.72                    |
| 04-Jun        | 1               | 0.93          | 0.89      | 0.62                | 0.85     | 0.35          | 0.63            | 0.28                                | 0.50                | 0.23                   | 0.26     | 0.53          | 0.63        | 0.46          | 0.80            | 0.33          | 0.44                    |
| 05-Jun        | 1               | 0.84          | 0.88      | 0.41                | 0.79     | 0.32          | 0.58            | 0.25                                | 0.55                | 0.22                   | 0.30     | 0.61          | 0.54        | 0.28          | 0.82            | 0.27          | 0.56                    |
| 06-Jun        | 1               | 1.32          | 0.86      | 0.53                | 0.81     | 0.38          | 0.60            | 0.28                                | 0.50                | 0.23                   | 0.59     | 0.64          | 0.88        | 0.25          | 0.81            | 0.30          | 0.54                    |
| 07-Jun        | 1               | 0.42          | 0.86      | 0.26                | 0.79     | 0.36          | 0.61            | 0.30                                | 0.57                | 0.22                   | 0.32     | 0.66          | 0.88        | 0.27          | 0.81            | 0.40          | 0.58                    |
| 10-Jun        | 3               | 0.22          | 0.83      | 0.27                | 0.79     | 0.24          | 0.58            | 0.29                                | 0.63                | 0.19                   | 0.44     | 0.35          | 0.81        | 0.32          | 0.75            | 0.28          | 0.67                    |
| 11-Jun        | 1               | 0.22          | 0.79      | 0.24                | 0.72     | 0.24          | 0.57            | 0.25                                | 0.55                | 0.21                   | 0.53     | 0.35          | 0.84        | 0.21          | 0.71            | 0.23          | 0.55                    |
| 12-Jun        | 1               | 0.26          | 0.84      | 0.27                | 0.78     | 0.23          | 0.60            | 0.23                                | 0.44                | 0.32                   | 0.65     | 0.31          | 0.87        | 0.27          | 0.83            | 0.22          | 0.72                    |
| 13-Jun        | 1               | 0.22          | 0.81      | 0.21                | 0.77     | 0.24          | 0.61            | 0.16                                | 0.57                | 0.28                   | 0.38     | 0.23          | 0.85        | 0.28          | 0.80            | 0.19          | 0.60                    |
| 14-Jun        | 1               | 0.21          | 0.91      | 0.22                | 0.77     | 0.20          | 0.42            | 0.27                                | 0.61                | 0.25                   | 0.41     | 0.27          | 0.81        | 0.19          | 0.80            | 0.20          | 0.63                    |
| 17-Jun        | 3               | 0.29          | 0.87      | 0.25                | 0.79     | 0.24          | 0.76            | 0.25                                | 0.65                | 0.27                   | 0.31     | 0.23          | 1.00        | 0.26          | 0.79            | 0.17          | 0.58                    |
| 18-Jun        | 1               | 0.15          | 0.77      | 0.25                | 0.69     | 0.22          | 0.62            | 0.15                                | 0.62                | 0.21                   | 0.30     | 0.20          | 0.87        | 0.20          | 0.75            | 0.20          | 0.61                    |
| 19-Jun        | 1               | 0.27          | 0.80      | 0.22                | 0.78     | 0.23          | 0.60            | 0.20                                | 0.58                | 0.20                   | 0.42     | 0.28          | 0.79        | 0.13          | 0.73            | 0.16          | 0.59                    |
| 20-Jun        | 1               | 0.27          | 0.81      | 0.29                | 0.69     | 0.27          | 0.55            | 0.18                                | 0.67                | 0.22                   | 0.64     | 0.28          | 0.73        | 0.25          | 0.72            | 0.21          | 0.60                    |
| 21-Jun        | 1               | 0.24          | 0.75      | 0.15                | 0.68     | 0.26          | 0.52            | 0.16                                | 0.62                | 0.23                   | 0.58     | 0.20          | 0.68        | 0.22          | 0.66            | 0.21          | 0.59                    |
| 24-Jun        | 3               | 0.24          | 0.83      | 0.17                | 0.72     | 0.20          | 0.60            | 0.24                                | 0.58                | 0.28                   | 0.47     | 0.29          | 0.87        | 0.19          | 0.76            | 0.20          | 0.58                    |
| 25-Jun        | 1               | 0.17          | 0.80      | 0.19                | 0.76     | 0.18          | 0.60            | 0.18                                | 0.61                | 0.15                   | 0.68     | 0.18          | 0.84        | 0.29          | 0.80            | 0.30          | 0.68                    |
| 26-Jun        | 1               | 0.31          | 0.80      | 0.25                | 0.75     | 0.29          | 0.58            | 0.26                                | 0.49                | 0.17                   | 0.40     | 0.28          | 0.80        | 0.18          | 0.73            | 0.23          | 0.66                    |
| 27-Jun        | 1               | 0.38          | 0.86      | 0.23                | 0.77     | 0.21          | 0.59            | 0.20                                | 0.42                | 0.16                   | 0.60     | 0.32          | 0.92        | 0.20          | 0.78            | 0.43          | 0.60                    |
| 28-Jun        | 1               | 0.30          | 0.84      | 0.21                | 0.78     | 0.43          | 0.60            | 0.26                                | 0.44                | 0.21                   | 0.65     | 0.35          | 0.87        | 0.25          | 0.83            | 0.24          | 0.72                    |
| 02-Jul        | 4               | 0.38          | 0.84      | 0.27                | 0.81     | 0.19          | 0.62            | 0.21                                | 0.50                | 0.16                   | 0.37     | 0.37          | 0.90        | 0.19          | 0.80            | 0.22          | 0.66                    |
| 03-Jul        | 1               | 0.23          | 0.87      | 0.18                | 0.80     | 0.29          | 0.65            | 0.20                                | 0.52                | 0.16                   | 0.39     | 0.20          | 0.88        | 0.20          | 0.85            | 0.30          | 0.79                    |
| 04-Jul        | 1               | 0.31          | 0.86      | 0.22                | 0.81     | 0.31          | 0.62            | 0.15                                | 0.45                | 0.21                   | 0.39     | 0.29          | 0.81        | 0.21          | 0.83            | 0.21          | 0.71                    |
| 05-Jul        | 1               | 0.36          | 0.89      | 0.30                | 0.84     | 0.30          | 0.59            | 0.22                                | 0.49                | 0.17                   | 0.40     | 0.30          | 0.83        | 0.20          | 0.75            | 0.26          | 0.68                    |
| 08-Jul        | 3               | 0.40          | 0.73      | 0.35                | 0.67     | 0.29          | 0.56            | 0.18                                | 0.49                | 0.18                   | 0.36     | 0.31          | 0.75        | 0.29          | 0.70            | 0.36          | 0.65                    |
| 09-Jul        | 1               | 0.47          | 0.74      | 0.26                | 0.72     | 0.23          | 0.57            | 0.18                                | 0.49                | 0.17                   | 0.42     | 0.21          | 0.76        | 0.23          | 0.75            | 0.23          | 0.67                    |
| 10-Jul        | 1               | 0.37          | 0.80      | 0.22                | 0.76     | 0.28          | 0.58            | 0.18                                | 0.48                | 0.24                   | 0.40     | 0.21          | 0.89        | 0.21          | 0.76            | 0.24          | 0.57                    |
| 11-Jul        | 1               | 0.23          | 0.86      | 0.25                | 0.81     | 0.22          | 0.60            | 0.21                                | 0.48                | 0.17                   | 0.37     | 0.21          | 0.85        | 0.23          | 0.79            | 0.23          | 0.71                    |
| 12-Jul        | 1               | 0.33          | 0.87      | 0.24                | 0.82     | 0.20          | 0.64            | 0.19                                | 0.56                | 0.16                   | 0.67     | 0.32          | 0.88        | 0.17          | 0.79            | 0.26          | 0.66                    |
| 15-Jul        | 3               | 0.33          | 0.86      | 0.26                | 0.77     | 0.30          | 0.64            | 0.21                                | 0.50                | 0.16                   | 0.51     | 0.22          | 0.86        | 0.23          | 0.82            | 0.21          | 0.73                    |
| 16-Jul        | 1               | 0.26          | 0.84      | 0.19                | 0.80     | 0.25          | 0.65            | 0.17                                | 0.49                | 0.18                   | 0.56     | 0.21          | 0.90        | 0.19          | 0.86            | 0.33          | 0.78                    |
| 17-Jul        | 1               | 0.32          | 0.82      | 0.27                | 0.79     | 0.33          | 0.63            | 0.33                                | 0.57                | 0.18                   | 0.48     | 0.32          | 0.80        | 0.35          | 0.79            | 0.24          | 0.72                    |
| 18-Jul        | 1               | 0.32          | 0.80      | 0.17                | 0.77     | 0.19          | 0.58            | 0.17                                | 0.54                | 0.18                   | 0.39     | 0.30          | 0.80        | 0.29          | 0.73            | 0.31          | 0.66                    |
| 19-Jul        | 1               | 0.35          | 0.77      | 0.30                | 0.69     | 0.32          | 0.69            | 0.17                                | 0.52                | 0.23                   | 0.56     | 0.24          | 0.79        | 0.25          | 0.72            | 0.20          | 0.61                    |
| 22-Jul        | 3               | 0.34          | 0.82      | 0.27                | 0.73     | 0.26          | 0.60            | 0.18                                | 0.47                | 0.22                   | 0.37     | 0.72          | 0.83        | 0.22          | 0.75            | 0.21          | 0.65                    |
| 23-Jul        | 1               | 0.23          | 0.80      | 0.16                | 0.74     | 0.19          | 0.60            | 0.17                                | 0.50                | 1.01                   | 0.50     | 0.22          | 0.85        | 0.17          | 0.76            | 0.17          | 0.66                    |

|               |                 | SAMPLE L      | OCATION (     | SOURCED             | FROM EI  | THER THE      | _               |               | SYSTEM<br>AGGED, SE | _               |                          |               | BASED ON    | I OPERAT      | IONAL NE       | EDS). TU      | RBIDITY                 |
|---------------|-----------------|---------------|---------------|---------------------|----------|---------------|-----------------|---------------|---------------------|-----------------|--------------------------|---------------|-------------|---------------|----------------|---------------|-------------------------|
| s             | : sample        | HARVE\<br>TA  | / PLANT<br>NK | PR'<br>(HIGH<br>TAI |          |               | E/CAFÉ<br>SIDE) | LIONS B       | BAY AVE.<br>DE-SAC) | KELVIN<br>(WORK | GROVE<br>(S YARD<br>IDE) | MAG.          | PLANT<br>NK | 1             | NORTH<br>/IEW) |               | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L      | Turbidity/NTU       | CL2/mg/L | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L            | Turbidity/NTU   | CL2/mg/L                 | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L       | Turbidity/NTU | CL2/mg/L                |
| 24-Jul        | 1               | 0.28          | 0.75          | 0.25                | 0.69     | 0.24          | 0.69            | 0.18          | 0.48                | 0.30            | 0.54                     | 0.24          | 0.90        | 0.29          | 0.88           | 0.17          | 0.68                    |
| 25-Jul        | 1               | 0.25          | 0.86          | 0.20                | 0.78     | 0.24          | 0.62            | 0.21          | 0.46                | 0.23            | 0.36                     | 0.35          | 0.82        | 0.18          | 0.80           | 0.21          | 0.74                    |
| 26-Jul        | 1               | 0.18          | 0.90          | 0.18                | 0.85     | 0.26          | 0.77            | 0.18          | 0.47                | 0.51            | 0.60                     | 0.20          | 0.80        | 0.17          | 0.71           | 0.20          | 0.67                    |
| 29-Jul        | 3               | 0.32          | 0.82          | 0.18                | 0.75     | 0.17          | 0.70            | 0.16          | 0.52                | 0.15            | 0.36                     | 0.23          | 0.87        | 0.15          | 0.83           | 0.21          | 0.71                    |
| 30-Jul        | 1               | 0.38          | 0.83          | 0.32                | 0.73     | 0.32          | 0.69            | 0.28          | 0.50                | 0.27            | 0.44                     | 0.41          | 0.84        | 0.30          | 0.76           | 0.28          | 0.68                    |
| 31-Jul        | 1               | 0.30          | 0.82          | 0.22                | 0.77     | 1.54          | 0.67            | 0.21          | 0.46                | 0.20            | 0.36                     | 0.46          | 0.90        | 0.32          | 0.78           | 0.18          | 0.49                    |
| 01-Aug        | 1               | 0.34          | 0.87          | 0.24                | 0.80     | 0.35          | 0.73            | 0.17          | 0.41                | 0.17            | 0.40                     | 0.68          | 0.90        | 0.21          | 0.84           | 0.40          | 0.53                    |
| 02-Aug        | 1               | 0.20          | 0.85          | 0.30                | 0.81     | 0.27          | 0.71            | 0.22          | 0.43                | 0.24            | 0.64                     | 0.22          | 0.87        | 0.22          | 0.77           | 0.25          | 0.65                    |
| 06-Aug        | 4               | 0.18          | 0.97          | 0.20                | 0.94     | 0.15          | 0.97            | 0.15          | 0.56                | 0.21            | 0.23                     | 0.21          | 0.72        | 0.18          | 0.78           | 0.20          | 0.58                    |
| 07-Aug        | 1               | 0.18          | 0.64          | 0.20                | 0.60     | 0.17          | 0.55            | 0.17          | 0.57                | 0.22            | 0.50                     | 0.44          | 0.63        | 0.31          | 0.64           | 0.23          | 0.53                    |
| 08-Aug        | 1               | 0.33          | 0.96          | 0.21                | 0.90     | 0.27          | 0.80            | 0.41          | 0.44                | 0.29            | 0.52                     | 0.38          | 0.86        | 0.23          | 0.67           | 0.29          | 0.47                    |
| 09-Aug        | 1               | 0.35          | 0.82          | 0.17                | 0.77     | 0.18          | 0.68            | 0.28          | 0.67                | 0.17            | 0.72                     | 0.19          | 0.73        | 0.19          | 0.73           | 0.28          | 0.73                    |
| 12-Aug        | 3               | 0.23          | 0.85          | 0.31                | 0.82     | 0.29          | 0.77            | 0.25          | 0.53                | 0.19            | 0.52                     | 0.39          | 0.90        | 0.25          | 0.84           | 0.26          | 0.63                    |
| 13-Aug        | 1               | 0.24          | 0.84          | 0.30                | 0.77     | 0.23          | 0.75            | 0.20          | 0.49                | 0.28            | 0.37                     | 0.37          | 0.82        | 0.24          | 0.76           | 0.26          | 0.60                    |
| 14-Aug        | 1               | 0.16          | 0.89          | 0.21                | 0.81     | 0.22          | 0.73            | 0.17          | 0.55                | 0.21            | 0.70                     | 0.20          | 0.91        | 0.21          | 0.83           | 0.20          | 0.70                    |
| 15-Aug        | 1               | 0.21          | 0.77          | 0.17                | 0.83     | 0.22          | 0.70            | 0.22          | 0.57                | 0.19            | 0.65                     | 0.18          | 0.78        | 0.18          | 0.73           | 0.22          | 0.71                    |
| 16-Aug        | 1               | 0.19          | 0.84          | 0.16                | 0.72     | 0.16          | 0.64            | 0.21          | 0.62                | 0.25            | 0.49                     | 0.30          | 0.71        | 0.29          | 0.66           | 0.27          | 0.52                    |
| 19-Aug        | 3               | 0.56          | 0.80          | 0.20                | 0.74     | 0.19          | 0.71            | 0.24          | 0.42                | 0.21            | 0.44                     | 0.24          | 0.84        | 0.21          | 0.82           | 0.23          | 0.64                    |
| 20-Aug        | 1               | 0.29          | 0.82          | 0.20                | 0.80     | 0.22          | 0.72            | 0.25          | 0.46                | 0.21            | 0.40                     | 0.45          | 0.84        | 0.21          | 0.79           | 0.24          | 0.63                    |
| 21-Aug        | 1               | 0.28          | 0.84          | 0.17                | 0.83     | 0.18          | 0.75            | 0.21          | 0.47                | 0.32            | 0.60                     | 0.51          | 0.82        | 0.17          | 0.80           | 0.32          | 0.64                    |
| 22-Aug        | 1               | 0.26          | 0.81          | 0.24                | 0.80     | 0.41          | 0.73            | 0.29          | 0.48                | 0.31            | 0.43                     | 0.58          | 0.83        | 0.26          | 0.82           | 0.24          | 0.66                    |
| 23-Aug        | 1               | 0.28          | 0.84          | 0.20                | 0.81     | 0.24          | 0.73            | 0.16          | 0.45                | 0.20            | 0.57                     | 0.26          | 0.95        | 0.25          | 0.88           | 0.23          | 0.63                    |
| 26-Aug        | 3               | 0.38          | 0.87          | 0.37                | 0.75     | 0.24          | 0.74            | 0.22          | 0.26                | 0.17            | 0.28                     | 0.25          | 0.90        | 0.22          | 0.73           | 0.23          | 0.55                    |
| 27-Aug        | 1               | 0.70          | 0.80          | 0.40                | 0.72     | 0.34          | 0.66            | 0.24          | 0.23                | 0.31            | 0.65                     | 0.36          | 0.87        | 0.24          | 0.77           | 0.29          | 0.61                    |
| 28-Aug        | 1               | 0.47          | 0.83          | 0.37                | 0.77     | 0.29          | 0.71            | 0.23          | 0.30                | 0.26            | 0.43                     | 0.35          | 0.85        | 0.33          | 0.79           | 0.31          | 0.65                    |
| 29-Aug        | 1               | 0.50          | 0.92          | 0.26                | 0.86     | 0.31          | 0.81            | 0.30          | 0.27                | 0.19            | 0.47                     | 0.43          | 0.88        | 0.31          | 0.80           | 0.25          | 0.59                    |
| 30-Aug        | 1               | 0.39          | 0.84          | 0.41                | 0.82     | 0.40          | 0.73            | 0.29          | 0.26                | 0.22            | 0.74                     | 0.63          | 0.82        | 0.32          | 0.74           | 0.21          | 0.61                    |
| 03-Sep        | 4               | 0.50          | 0.80          | 0.59                | 0.74     | 0.32          | 0.68            | 0.29          | 0.38                | 0.21            | 0.45                     | 0.37          | 0.81        | 0.24          | 0.67           | 0.24          | 0.65                    |
| 04-Sep        | 1               | 0.48          | 0.80          | 0.24                | 0.78     | 0.32          | 0.72            | 0.27          | 0.38                | 0.20            | 0.38                     | 0.49          | 0.80        | 0.22          | 0.75           | 0.27          | 0.65                    |
| 05-Sep        | 1               | 0.87          | 0.85          | 0.26                | 0.76     | 0.20          | 0.74            | 0.18          | 0.40                | 0.15            | 0.53                     | 0.19          | 0.80        | 0.19          | 0.67           | 0.21          | 0.64                    |
| 06-Sep        | 1               | 0.57          | 0.85          | 0.34                | 0.80     | 0.23          | 0.75            | 0.23          | 0.41                | 0.24            | 0.50                     | 0.23          | 0.87        | 0.23          | 0.81           | 0.31          | 0.71                    |
| 09-Sep        | 3               | 0.36          | 0.84          | 0.23                | 0.79     | 0.20          | 0.76            | 0.15          | 0.50                | 0.18            | 0.50                     | 0.39          | 0.90        | 0.18          | 0.77           | 0.17          | 0.70                    |
| 10-Sep        | 1               | 0.39          | 0.90          | 0.22                | 0.86     | 0.23          | 0.78            | 0.18          | 0.52                | 0.19            | 0.78                     | 0.21          | 0.89        | 0.19          | 0.81           | 0.26          | 0.63                    |
| 11-Sep        | 1               | 0.34          | 0.85          | 0.21                | 0.84     | 0.20          | 0.77            | 0.20          | 0.53                | 0.19            | 0.74                     | 0.23          | 0.87        | 0.23          | 0.83           | 0.26          | 0.73                    |
| 12-Sep        | 1               | 0.37          | 0.83          | 0.27                | 0.83     | 0.24          | 0.67            | 0.26          | 0.54                | 0.26            | 0.53                     | 0.21          | 0.85        | 0.22          | 0.77           | 0.22          | 0.72                    |
| 13-Sep        | 1               | 0.49          | 0.83          | 0.31                | 0.82     | 0.36          | 0.76            | 0.26          | 0.49                | 0.27            | 0.47                     | 0.39          | 0.84        | 0.26          | 0.80           | 0.28          | 0.66                    |

|               |                 | SAMPLI        | LOCATION         | (SOURCED      | FROM EI            | THER THE      | _               |               | SYSTEM (            | _             |                  |               | BASED ON    | I OPERAT      | IONAL NE       | EDS). TU      | RBIDITY                 |
|---------------|-----------------|---------------|------------------|---------------|--------------------|---------------|-----------------|---------------|---------------------|---------------|------------------|---------------|-------------|---------------|----------------|---------------|-------------------------|
| S             | sample          |               | EY PLANT<br>FANK | (HIGI         | V-3<br>HWAY<br>NK) |               | E/CAFÉ<br>SIDE) | LIONS B       | BAY AVE.<br>DE-SAC) | KELVIN        | GROVE<br>(S YARD | MAG.          | PLANT<br>NK | 1             | NORTH<br>/IEW) | всн (с        | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays | Days since last | Turbidity/NTU | CL2/mg/L         | Turbidity/NTU | CL2/mg/L           | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L            | Turbidity/NTU | CL2/mg/L         | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L       | Turbidity/NTU | CL2/mg/L                |
| 16-Sep        | 3               | 0.47          | 0.80             | 0.25          | 0.76               | 0.21          | 0.72            | 0.30          | 0.43                | 0.18          | 0.37             | 0.22          | 0.83        | 0.17          | 0.79           | 0.28          | 0.65                    |
| 17-Sep        | 1               | 0.37          | 0.84             | 0.38          | 0.81               | 0.25          | 0.76            | 0.37          | 0.41                | 0.25          | 0.35             | 0.23          | 0.83        | 0.20          | 0.75           | 0.25          | 0.64                    |
| 18-Sep        | 1               | 0.44          | 0.87             | 0.43          | 0.83               | 0.61          | 0.80            | 0.38          | 0.39                | 0.33          | 0.35             | 0.58          | 0.84        | 0.40          | 0.79           | 0.41          | 0.62                    |
| 19-Sep        | 1               | 0.52          | 0.94             | 0.40          | 0.89               | 0.39          | 0.85            | 0.28          | 0.47                | 0.29          | 0.41             | 0.52          | 0.86        | 0.27          | 0.80           | 0.26          | 0.64                    |
| 20-Sep        | 1               | 0.44          | 0.85             | 0.31          | 0.83               | 0.34          | 0.78            | 0.36          | 0.43                | 0.29          | 0.77             | 0.61          | 0.86        | 0.33          | 0.77           | 0.40          | 0.66                    |
| 23-Sep        | 3               | 0.36          | 0.86             | 0.40          | 0.82               | 0.32          | 0.79            | 0.29          | 0.49                | 0.27          | 0.41             | 0.30          | 0.83        | 0.31          | 0.81           | 0.29          | 0.70                    |
| 24-Sep        | 1               | 0.56          | 0.87             | 0.35          | 0.84               | 0.63          | 0.79            | 0.31          | 0.56                | 0.29          | 0.63             | 0.76          | 0.84        | 0.28          | 0.80           | 0.48          | 0.66                    |
| 25-Sep        | 1               | 0.60          | 0.80             | 0.31          | 0.76               | 0.35          | 0.73            | 0.29          | 0.53                | 0.31          | 0.47             | 0.40          | 0.84        | 0.37          | 0.80           | 0.50          | 0.68                    |
| 26-Sep        | 1               | 0.76          | 0.69             | 0.50          | 0.68               | 0.45          | 0.60            | 0.40          | 0.54                | 0.40          | 0.53             | 0.83          | 0.81        | 0.44          | 0.73           | 0.43          | 0.66                    |
| 27-Sep        | 1               | 0.33          | 0.73             | 0.31          | 0.72               | 0.30          | 0.59            | 0.24          | 0.44                | 0.39          | 0.46             | 0.38          | 0.77        | 0.28          | 0.74           | 0.29          | 0.60                    |
| 01-Oct        | 4               | 0.39          | 0.87             | 0.41          | 0.80               | 0.27          | 0.75            | 0.27          | 0.46                | 0.27          | 0.20             | 0.47          | 0.80        | 0.21          | 0.76           | 0.25          | 0.68                    |
| 02-Oct        | 1               | 0.98          | 0.82             | 0.29          | 0.79               | 0.55          | 0.71            | 0.26          | 0.51                | 0.39          | 0.35             | 0.47          | 0.84        | 0.30          | 0.78           | 0.31          | 0.62                    |
| 03-Oct        | 1               | 0.63          | 0.84             | 0.23          | 0.75               | 0.20          | 0.71            | 0.21          | 0.45                | 0.18          | 0.67             | 0.19          | 0.89        | 0.23          | 0.78           | 0.25          | 0.68                    |
| 04-Oct        | 1               | 0.47          | 0.87             | 0.23          | 0.92               | 0.34          | 0.77            | 0.19          | 0.50                | 0.20          | 0.77             | 0.41          | 0.85        | 0.25          | 0.87           | 0.22          | 0.73                    |
| 07-Oct        | 3               | 3.95          | 0.88             | 0.52          | 0.86               | 0.29          | 0.78            | 0.21          | 0.30                | 0.37          | 0.50             | 0.17          | 0.85        | 0.27          | 0.85           | 0.31          | 0.71                    |
| 08-Oct        | 1               | 1.03          | 0.86             | 0.55          | 0.84               | 0.64          | 0.77            | 0.29          | 0.43                | 0.22          | 0.45             | 0.39          | 0.90        | 0.20          | 0.81           | 0.36          | 0.68                    |
| 09-Oct        | 1               | 1.45          | 0.82             | 0.39          | 0.80               | 0.37          | 0.70            | 0.25          | 0.45                | 0.25          | 0.29             | 0.36          | 0.93        | 0.27          | 0.90           | 0.51          | 0.71                    |
| 10-Oct        | 1               | 0.58          | 0.84             | 0.30          | 0.82               | 0.32          | 0.74            | 0.34          | 0.44                | 0.40          | 0.31             | 0.39          | 0.83        | 0.33          | 0.73           | 0.35          | 0.74                    |
| 11-Oct        | 1               | 1.15          | 0.84             | 0.50          | 0.80               | 0.50          | 0.70            | 0.39          | 0.40                | 0.31          | 0.43             | 0.78          | 0.78        | 0.44          | 0.77           | 0.38          | 0.65                    |
| 15-Oct        | 4               | 1.08          | 0.80             | 0.47          | 0.71               | 0.44          | 0.67            | 0.38          | 0.49                | 0.36          | 0.47             | 0.70          | 0.82        | 0.39          | 0.78           | 0.31          | 0.70                    |
| 16-Oct        | 1               | 0.29          | 0.80             | 0.28          | 0.78               | 0.23          | 0.70            | 0.40          | 0.51                | 0.28          | 0.51             | 0.91          | 0.82        | 0.30          | 0.83           | 0.21          | 0.68                    |
| 17-Oct        | 1               | 0.20          | 0.96             | 0.15          | 0.89               | 0.20          | 0.83            | 0.20          | 0.36                | 0.19          | 0.71             | 0.58          | 0.85        | 0.17          | 0.86           | 1.31          | 0.61                    |
| 18-Oct        | 1               | 0.20          | 0.96             | 0.15          | 0.89               | 0.20          | 0.83            | 0.20          | 0.36                | 0.19          | 0.71             | 0.58          | 0.85        | 0.17          | 0.86           | 1.31          | 0.61                    |
| 21-Oct        | 3               | 1.02          | 0.84             | 0.64          | 0.71               | 0.51          | 0.59            | 0.37          | 0.33                | 0.36          | 0.58             | 0.59          | 0.42        | 0.41          | 0.69           | 1.16          | 0.21                    |
| 22-Oct        | 1               | 0.48          | 0.90             | 0.42          | 0.84               | 0.42          | 0.74            | 0.49          | 0.39                | 0.40          | 0.64             | 0.78          | 1.03        | 0.35          | 0.79           | 0.47          | 0.20                    |
| 23-Oct        | 1               | 0.60          | 0.84             | 0.51          | 0.81               | 0.44          | 0.71            | 0.30          | 0.53                | 0.24          | 0.53             | 0.52          | 0.95        | 0.27          | 0.80           | 0.32          | 0.31                    |
| 24-Oct        | 1               | 0.59          | 0.83             | 0.35          | 0.78               | 0.30          | 0.80            | 0.32          | 0.53                | 0.41          | 0.20             | 0.64          | 0.84        | 0.30          | 0.78           | 0.25          | 0.40                    |
| 25-Oct        | 1               | 0.50          | 0.93             | 0.23          | 0.87               | 0.27          | 0.75            | 0.30          | 0.58                | 0.22          | 0.64             | 0.39          | 0.87        | 0.20          | 0.87           | 0.25          | 0.41                    |
| 28-Oct        | 3               | 0.64          | 0.81             | 0.30          | 0.78               | 0.20          | 0.70            | 0.21          | 0.53                | 0.23          | 0.45             | 0.61          | 0.88        | 0.34          | 0.87           | 0.30          | 0.49                    |
| 29-Oct        | 1               | 0.75          | 0.82             | 0.22          | 0.74               | 0.64          | 0.66            | 0.29          | 0.54                | 0.22          | 0.20             | 1.28          | 0.74        | 0.32          | 0.68           | 0.63          | 0.63                    |
| 30-Oct        | 1               | 0.44          | 0.87             | 0.22          | 0.87               | 0.61          | 0.74            | 0.20          | 0.56                | 0.21          | 0.40             | 0.80          | 0.90        | 0.19          | 0.87           | 0.31          | 0.46                    |
| 31-Oct        | 1               | 0.36          | 0.80             | 0.29          | 0.76               | 0.69          | 0.63            | 0.22          | 0.56                | 0.20          | 0.43             | 0.42          | 0.80        | 0.22          | 0.74           | 2.97          | 0.57                    |
| 01-Nov        | 1               | 0.44          | 0.81             | 0.32          | 0.73               | 0.36          | 0.68            | 0.32          | 0.51                | 0.28          | 0.66             | 0.40          | 0.89        | 0.28          | 0.85           | 0.40          | 0.50                    |
| 04-Nov        | 3               | 0.62          | 0.90             | 0.32          | 0.83               | 0.27          | 0.78            | 0.16          | 0.60                | 0.16          | 0.65             | 0.25          | 0.88        | 0.73          | 0.86           | 0.26          | 0.57                    |
| 05-Nov        | 1               | 0.40          | 0.73             | 0.25          | 0.69               | 0.39          | 0.64            | 0.35          | 0.57                | 0.19          | 0.34             | 0.69          | 0.78        | 0.30          | 0.72           | 0.27          | 0.60                    |
| 06-Nov        | 1               | 0.65          | 0.91             | 0.20          | 0.87               | 0.34          | 0.73            | 0.22          | 0.48                | 0.19          | 0.31             | 0.29          | 0.99        | 0.21          | 0.94           | 0.33          | 0.43                    |

|                  |                 | SAMPLE LO         | CATION (     | SOURCED             | FROM EI  | THER THE      |                 |               | SYSTEM (            | _                      |              |               | BASED ON    | N OPERAT      | IONAL NE        | EDS). TU      | RBIDITY                 |
|------------------|-----------------|-------------------|--------------|---------------------|----------|---------------|-----------------|---------------|---------------------|------------------------|--------------|---------------|-------------|---------------|-----------------|---------------|-------------------------|
| S                | t sample        | HARVEY<br>TAN     |              | PR'<br>(HIGH<br>TAI |          |               | E/CAFÉ<br>SIDE) |               | BAY AVE.<br>DE-SAC) | KELVIN<br>(WORK<br>INS |              |               | PLANT<br>NK |               | (NORTH<br>/IEW) |               | SWICK<br>CUL-DE-<br>AC) |
| 2024 workdays    | Days since last | Turbidity/NTU     | CL2/mg/L     | Turbidity/NTU       | CL2/mg/L | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L            | Turbidity/NTU          | CL2/mg/L     | Turbidity/NTU | CL2/mg/L    | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU | CL2/mg/L                |
| 07-Nov           | 1               | 0.58              | 0.99         | 0.26                | 0.89     | 0.47          | 0.84            | 0.23          | 0.55                | 0.20                   | 0.69         | 0.41          | 0.92        | 0.27          | 0.92            | 0.36          | 0.60                    |
| 08-Nov           | 1               | 0.20              | 0.89         | 0.18                | 0.75     | 0.29          | 0.69            | 0.20          | 0.63                | 0.29                   | 0.34         | 0.29          | 0.81        | 0.26          | 0.78            | 0.25          | 0.72                    |
| 12-Nov           | 4               | <mark>0.61</mark> | 0.92         | 0.59                | 0.83     | 0.41          | 0.75            | 0.21          | 0.62                | 0.31                   | 0.61         | 0.50          | 0.74        | 0.27          | 0.84            | 0.37          | 0.61                    |
| 13-Nov           | 1               | 2.30              | 0.80         | 0.57                | 0.80     | 0.45          | 0.68            | 0.31          | 0.57                | 0.32                   | 0.28         | 0.79          | 0.83        | 0.28          | 0.81            | 0.26          | 0.47                    |
| 14-Nov           | 1               | 0.73              | 0.87         | 0.69                | 0.79     | 0.51          | 0.69            | 0.30          | 0.50                | 0.31                   | 0.73         | 0.69          | 0.80        | 0.35          | 0.76            | 0.40          | 0.41                    |
| 15-Nov           | 1               | 1.06              | 0.88         | 0.46                | 0.80     | 0.42          | 0.63            | 0.46          | 0.50                | 0.28                   | 0.75         | 0.77          | 0.96        | 0.28          | 0.79            | 0.38          | 0.30                    |
| 18-Nov           | 3               | 0.75              | 0.81         | 0.34                | 0.74     | 0.23          | 0.66            | 0.24          | 0.55                | 0.29                   | 0.71         | 0.40          | 0.83        | 0.26          | 0.77            | 0.33          | 0.44                    |
| 19-Nov           | 1               | 0.49              | 0.90         | 0.33                | 0.86     | 0.33          | 0.78            | 0.34          | 0.60                | 0.31                   | 0.72         | 0.56          | 0.90        | 0.34          | 0.84            | 0.27          | 0.34                    |
| 20-Nov           | 1               | 0.68              | 0.80         | 0.31                | 0.79     | 0.41          | 0.70            | 0.27          | 0.69                | 0.25                   | 0.68         | 0.55          | 0.90        | 0.27          | 0.79            | 0.51          | 0.39                    |
| 21-Nov           | 1               | 0.57              | 0.70         | 0.24                | 0.71     | 0.39          | 0.58            | 0.23          | 0.61                | 0.19                   | 0.52         | 0.32          | 0.87        | 0.39          | 0.83            | 0.20          | 0.48                    |
| 22-Nov           | 1               | 0.42              | 0.81         | 0.24                | 0.72     | 0.50          | 0.71            | 0.22          | 0.50                | 0.25                   | 0.75         | 0.43          | 0.80        | 0.28          | 0.79            | 0.51          | 0.62                    |
| 25-Nov           | 3               | 0.48              | 0.90         | 0.22                | 0.82     | 0.26          | 0.79            | 0.26          | 0.66                | 0.16                   | 0.53         | 0.33          | 0.89        | 0.23          | 0.80            | 0.24          | 0.52                    |
| 26-Nov           | 1               | 0.41              | 0.93         | 0.24                | 0.92     | 0.24          | 0.76            | 0.19          | 0.68                | 0.23                   | 0.26         | 0.31          | 0.88        | 0.29          | 0.84            | 0.29          | 0.62                    |
| 27-Nov           | 1               | 0.56              | 0.90         | 0.19                | 0.87     | 0.27          | 0.76            | 0.16          | 0.72                | 0.21                   | 0.40         | 0.31          | 0.90        | 0.35          | 0.85            | 0.36          | 0.63                    |
| 28-Nov           | 1               | 0.50              | 0.88         | 0.34                | 0.84     | 0.45          | 0.76            | 0.51          | 0.70                | 0.38                   | 0.42         | 0.40          | 0.86        | 0.26          | 0.85            | 0.31          | 0.62                    |
| 29-Nov           | 1               | 0.52              | 0.82         | 0.19                | 0.83     | 0.15          | 0.75            | 0.32          | 0.73                | 0.19                   | 0.81         | 0.21          | 0.84        | 0.21          | 0.83            | 0.22          | 0.67                    |
| 02-Dec           | 3               | 0.35              | 0.82         | 0.27                | 0.84     | 0.25          | 0.71            | 0.23          | 0.76                | 0.20                   | 0.83         | 0.37          | 0.89        | 0.19          | 0.90            | 0.32          | 0.66                    |
| 03-Dec           | 1               | 0.35              | 0.82         | 0.27                | 0.84     | 0.25          | 0.71            | 0.23          | 0.76                | 0.20                   | 0.83         | 0.37          | 0.89        | 0.19          | 0.90            | 0.32          | 0.66                    |
| 04-Dec           | 1               | 0.29              | 0.82         | 0.38                | 0.83     | 0.32          | 0.73            | 0.36          | 0.74                | 0.18                   | 0.59         | 0.26          | 0.88        | 0.20          | 0.84            | 0.25          | 0.68                    |
| 05-Dec           | 1               | 0.51              | 0.80         | 0.24                | 0.77     | 0.44          | 0.70<br>0.67    | 0.35          | 0.72                | 0.20                   | 0.59<br>0.51 | 0.26          | 0.85        | 0.20          | 0.84            | 0.34          | 0.72<br>0.66            |
| 06-Dec<br>09-Dec | 3               | 0.33              | 0.81<br>0.91 | 0.21                | 0.79     | 0.20          | 0.84            |               | _                   | 0.33                   | 0.73         | 0.29          | 0.80        | 0.29          | 0.81<br>0.82    | 0.19          |                         |
| 10-Dec           | 1               | 0.34              | 0.91         | 0.39                | 0.81     | 0.40          | 0.84            | 0.18          | 0.78                | 0.19                   | 0.62         | 0.23          | 0.83        | 0.23          | 0.82            | 0.20          | 0.63<br>0.60            |
| 11-Dec           | 1               | 0.50              | 0.89         | 0.32                | 0.87     | 0.42          | 0.81            | 0.21          | 0.79                | 0.14                   | 0.56         | 0.34          | 0.74        | 0.66          | 0.80            | 0.60          | 0.60                    |
| 12-Dec           | 1               | 0.55              | 0.80         | 0.24                | 0.85     | 0.30          | 0.77            | 0.20          | 0.73                | 0.19                   | 0.49         | 0.40          | 0.74        | 0.32          | 0.80            | 0.29          | 0.65                    |
| 13-Dec           | 1               | 0.41              | 0.90         | 0.27                | 0.87     | 0.24          | 0.74            | 0.38          | 0.75                | 0.18                   | 0.79         | 0.34          | 0.93        | 0.21          | 0.90            | 0.40          | 0.69                    |
| 16-Dec           | 3               | 0.26              | 0.92         | 0.31                | 0.86     | 0.30          | 0.80            | 0.33          | 0.71                | 0.19                   | 0.50         | 0.45          | 0.85        | 0.26          | 0.77            | 0.30          | 0.65                    |
| 17-Dec           | 1               | 0.37              | 0.87         | 0.20                | 0.86     | 0.24          | 0.69            | 0.28          | 0.73                | 0.41                   | 0.57         | 0.40          | 0.94        | 0.23          | 0.83            | 0.30          | 0.60                    |
| 18-Dec           | 1               | 0.31              | 0.84         | 0.24                | 0.73     | 0.26          | 0.64            | 0.25          | 0.82                | 0.21                   | 0.50         | 0.26          | 0.94        | 0.25          | 0.86            | 0.26          | 0.75                    |
| 19-Dec           | 1               | 0.28              | 0.98         | 0.24                | 0.92     | 0.20          | 0.68            | 0.21          | 0.68                | 0.31                   | 0.37         | 0.44          | 0.74        | 0.32          | 0.72            | 0.22          | 0.81                    |
| 20-Dec           | 1               | 0.34              | 0.97         | 0.24                | 0.90     | 0.25          | 0.74            | 0.22          | 0.60                | 0.43                   | 0.27         | 0.39          | 0.71        | 0.27          | 0.73            | 0.27          | 0.61                    |
| 23-Dec           | 3               | 0.29              | 0.80         | 0.33                | 0.75     | 0.18          | 0.58            | 0.28          | 0.72                | 0.27                   | 0.37         | 0.67          | 0.90        | 0.38          | 0.76            | 0.49          | 0.55                    |
| 27-Dec           | 4               | 0.24              | 0.80         | 0.24                | 0.77     | 0.29          | 0.60            | 0.19          | 0.67                | 0.33                   | 0.58         | 0.39          | 0.82        | 0.31          | 0.74            | 0.31          | 0.71                    |
| 30-Dec           | 3               | 0.36              | 0.85         | 0.36                | 0.86     | 0.20          | 0.68            | 0.22          | 0.72                | 0.24                   | 0.72         | 0.29          | 0.86        | 0.20          | 0.82            | 0.38          | 0.61                    |
| 31-Dec           | 1               | 0.38              | 0.90         | 0.15                | 0.89     | 0.35          | 0.73            | 0.16          | 0.72                | 0.23                   | 0.76         | 0.30          | 0.90        | 0.82          | 0.85            | 0.48          | 0.68                    |

|               |                 | SAI | MPLE LO       | CATION (         | SOURCED       | FROM EI            | THER THE      |                 | <mark>/ALBERTA</mark><br>NTU IS FLA |                    | _                       |          |                   | BASED ON | N OPERAT      | IONAL NE       | EDS). TUI             | RBIDITY  |
|---------------|-----------------|-----|---------------|------------------|---------------|--------------------|---------------|-----------------|-------------------------------------|--------------------|-------------------------|----------|-------------------|----------|---------------|----------------|-----------------------|----------|
| 8             | sample          | H   | IARVEY F      |                  | (HIGH         | V-3<br>HWAY<br>NK) |               | E/CAFÉ<br>SIDE) | LIONS B                             | AY AVE.<br>PE-SAC) | KELVIN<br>(WORK<br>INSI | S YARD   | MAG.<br>TA        |          | 1             | NORTH<br>/IEW) | BRUN:<br>BCH (C<br>SA | UL-DE-   |
| 2024 workday: | Days since last |     | Turbidity/NTU | CL2/mg/L         | Turbidity/NTU | CL2/mg/L           | Turbidity/NTU | CL2/mg/L        | Turbidity/NTU                       | CL2/mg/L           | Turbidity/NTU           | CL2/mg/L | Turbidity/NTU     | CL2/mg/L | Turbidity/NTU | CL2/mg/L       | Turbidity/NTU         | CL2/mg/L |
| С             | OUNT            |     | 248           | <mark>248</mark> | 249           | <mark>249</mark>   | 248           | 248             | 249                                 | 249                | 249                     | 249      | 243               | 243      | 249           | 249            | 249                   | 249      |
|               | MIN             |     | 0.15          | 0.64             | 0.15          | 0.35               | 0.13          | 0.34            | 0.12                                | 0.23               | 0.12                    | 0.19     | 0.13              | 0.42     | 0.11          | 0.64           | 0.14                  | 0.20     |
|               | MAX             |     | 3.95          | 0.99             | 0.86          | 0.95               | 1.54          | 0.97            | 0.78                                | 0.83               | 1.01                    | 0.83     | <mark>2.68</mark> | 1.10     | 1.08          | 1.03           | 2.97                  | 0.93     |
| MI            | EDIAN           | (   | 0.37          | 0.85             | 0.26          | 0.81               | 0.29          | 0.71            | 0.22                                | 0.57               | 0.21                    | 0.50     | 0.37              | 0.85     | 0.23          | 0.80           | 0.26                  | 0.65     |
| AVE           | ERAGE           |     | 0.46          | 0.85             | 0.30          | 0.81               | 0.34          | 0.70            | 0.24                                | 0.57               | 0.24                    | 0.51     | 0.45              | 0.85     | 0.26          | 0.79           | 0.32                  | 0.63     |

Missing data

Turbidity > 0.90 NTU

 $\text{Cl}_2$  residual <0.2 mg/L (none where data is not missing)

# APPENDIX 5A: BIANNUAL METALS & CHEMISTRY, 19 MAR. (ABRIDGED)

 Page
 :
 3 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay



Project : ---

| Sub-Matrix: Surface Water             |                 |            | Cli               | ent sample ID    | Harvey Raw           | Magnesia Raw         | A-THE              |                 | -              |
|---------------------------------------|-----------------|------------|-------------------|------------------|----------------------|----------------------|--------------------|-----------------|----------------|
| (Matrix: Water)                       |                 |            |                   |                  | Water                | Water                |                    |                 |                |
|                                       |                 |            | Client sampl      | ling date / time | 19-Mar-2024<br>10:30 | 19-Mar-2024<br>11:20 | 9 <u>010</u> 10    | 1 <u></u> 1     | _              |
| Analyte                               | GAS Number      | Method/Lab | LOR               | Unit             | VA24A5754-017        | VA24A5754-018        | -                  | <u>Granings</u> | (Section)      |
| 54000000                              |                 | 111        |                   |                  | Result               | Result               |                    |                 |                |
| Physical Tests                        | 200.000         | 54550      | and the second of |                  |                      | a management         |                    |                 |                |
| Absorbance, UV (@ 254nm)              | E404/           | 1302       | 0.0050            | AU/cm            | 0.0480               | 0.0280               | -                  | 7216.           | -              |
| Alkalinity, total (as CaCO3)          | E290/           | /VA        | 1.0               | mg/L             | 3.3                  | 4.7                  | 1                  | 7-7-            |                |
| Conductivity                          | E100/           | /VA        | 2.0               | μS/cm            | 11.1                 | 27.1                 | S                  | 3242            |                |
| Hardness (as CaCO3), from total Ca/Mg | EC10            | IOA/VA     | 0.50              | mg/L             | 3.93                 | 8.79                 | 2 <del></del> 2    | 3200            |                |
| рН                                    | E108/           | /VA        | 0.10              | pH units         | 6.51                 | 6.61                 | S S                | 3200            |                |
| Solids, total suspended [TSS]         | E160/           | /VA        | 3.0               | mg/L             | <3.0                 | <3.0                 | S                  | 3202            |                |
| Turbidity                             | E121/           | /VA        | 0.10              | NTU              | <0.10                | 0.18                 | S S                | 3222            |                |
| Transmittance, UV (@ 254nm)           | E404/           | /VA        | 1.0               | % T/cm           | 89.5                 | 93.8                 |                    | 3242            | -              |
| Organic / Inorganic Carbon            | 199             |            |                   |                  |                      |                      |                    |                 |                |
| Carbon, total organic [TOC]           | E355-           | -L/VA      | 0.50              | mg/L             | 1.72                 | 1.32                 | -                  | 120             |                |
| Total Metals                          |                 |            |                   |                  |                      |                      |                    |                 |                |
| Aluminum, total                       | 7429-90-5 E420/ | /VA        | 0.0030            | mg/L             | 0.0594               | 0.0403               | 70000              | 222             |                |
| Antimony, total                       | 7440-36-0 E420/ | /VA        | 0.00010           | mg/L             | <0.00010             | <0.00010             | 7000               | 222             | -              |
| Arsenic, total                        | 7440-38-2 E420/ | /VA        | 0.00010           | mg/L             | 0.00011              | 0.00013              | ( )                |                 |                |
| Barium, total                         | 7440-39-3 E420/ | /VA        | 0.00010           | mg/L             | 0.00128              | 0.00143              | 2000               | 222             |                |
| Beryllium, total                      | 7440-41-7 E420/ | /VA        | 0.000020          | mg/L             | <0.000020            | <0.000020            | ( <u>-1777</u> -17 |                 |                |
| Bismuth, total                        | 7440-69-9 E420/ | /VA        | 0.000050          | mg/L             | <0.000050            | <0.000050            | 2000               |                 | 8              |
| Boron, total                          | 7440-42-8 E420/ | /VA        | 0.010             | mg/L             | <0.010               | <0.010               | 2-2-2              | 2222            | 8-00           |
| Cadmium, total                        | 7440-43-9 E420/ |            | 0.0000050         | mg/L             | <0.0000050           | 0.0000147            |                    |                 | 8              |
| Calcium, total                        | 7440-70-2 E420/ |            | 0.050             | mg/L             | 1.27                 | 2.82                 | 2                  |                 |                |
| Cesium, total                         | 7440-46-2 E420/ | /VA        | 0.000010          | mg/L             | <0.000010            | <0.000010            |                    |                 | 9              |
| Chromium, total                       | 7440-47-3 E420/ | /VA        | 0.00050           | mg/L             | <0.00050             | <0.00050             | 7222               | 100             | 3.44           |
| Cobalt, total                         | 7440-48-4 E420/ | /VA        | 0.00010           | mg/L             | <0.00010             | <0.00010             | 222                | 200             | 3.74           |
| Copper, total                         | 7440-50-8 E420/ | /VA        | 0.00050           | mg/L             | 0.00126              | 0.00648              | 7200               | 200             | 3.44           |
| Iron, total                           | 7439-89-8 E420/ | /VA        | 0.010             | mg/L             | <0.010               | 0.011                | 7200               | 100             | 82/4           |
| Lead, total                           | 7439-92-1 E420/ | /VA        | 0.000050          | mg/L             | <0.000050            | 0.000110             | 3 <u>222</u> 1     | 2332            | (3 <u>V/</u> ) |
| Lithium, total                        | 7439-93-2 E420/ | /VA        | 0.0010            | mg/L             | <0.0010              | <0.0010              | 7 <u>222</u> 1     | 2552            | 2              |
| Magnesium, total                      | 7439-95-4 E420/ | /VA        | 0.0050            | mg/L             | 0.184                | 0.425                | ( <u>222</u> )     | 200             | 72/4           |
| Manganese, total                      | 7439-96-5 E420/ | NΑ         | 0.00010           | mg/L             | 0.00024              | 0.00072              | 7200               | 2002            | 95/46          |

 Page
 :
 4 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

Project : ----



## Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |                       | Cli          | ent sample ID    | Harvey Raw<br>Water  | Magnesia Raw<br>Water | 977737             | 1,577);               | 1070     |
|----------------------------------------------|-----------------------|--------------|------------------|----------------------|-----------------------|--------------------|-----------------------|----------|
|                                              |                       | Client sampl | ling date / time | 19-Mar-2024<br>10:30 | 19-Mar-2024<br>11:20  | 3                  |                       |          |
| Analyte                                      | CAS Number Method/Lab | LOR          | Unit             | VA24A5754-017        | VA24A5754-018         | V                  | 1 <del>000000</del> 4 | 37777776 |
|                                              |                       |              |                  | Result               | Result                | 10 <del>11</del> 2 | 777.6                 | (77%)    |
| Total Metals                                 |                       |              |                  |                      |                       |                    |                       |          |
| Mercury, total                               | 7439-97-6 E508/VA     | 0.0000050    | mg/L             | <0.0000050           | <0.0000050            | A 100 A            | 777                   |          |
| Molybdenum, total                            | 7439-98-7 E420/VA     | 0.000050     | mg/L             | 0.000201             | 0.000155              | 200                | 1777                  | -        |
| Nickel, total                                | 7440-02-0 E420/VA     | 0.00050      | mg/L             | < 0.00050            | <0.00050              | 1777               | 1000                  | -        |
| Phosphorus, total                            | 7723-14-0 E420/VA     | 0.050        | mg/L             | < 0.050              | < 0.050               | A TOTAL            |                       |          |
| Potassium, total                             | 7440-09-7 E420/VA     | 0.050        | mg/L             | 0.079                | 0.078                 | ATSTALL            |                       |          |
| Rubidium, total                              | 7440-17-7 E420/VA     | 0.00020      | mg/L             | < 0.00020            | <0.00020              | ATT 1              |                       |          |
| Selenium, total                              | 7782-49-2 E420/VA     | 0.000050     | mg/L             | <0.000050            | 0.000081              |                    |                       |          |
| Silicon, total                               | 7440-21-3 E420/VA     | 0.10         | mg/L             | 1.87                 | 4.07                  |                    |                       |          |
| Silver, total                                | 7440-22-4 E420/VA     | 0.000010     | mg/L             | <0.000010            | <0.000010             |                    |                       |          |
| Sodium, total                                | 7440-23-5 E420/VA     | 0.050        | mg/L             | 0.606                | 1.36                  |                    |                       |          |
| Strontium, total                             | 7440-24-6 E420/VA     | 0.00020      | mg/L             | 0.00401              | 0.0150                |                    |                       |          |
| Sulfur, total                                | 7704-34-9 E420/VA     | 0.50         | mg/L             | < 0.50               | 1.98                  |                    |                       |          |
| Tellurium, total                             | 13494-80-9 E420/VA    | 0.00020      | mg/L             | < 0.00020            | <0.00020              |                    |                       |          |
| Thallium, total                              | 7440-28-0 E420/VA     | 0.000010     | mg/L             | <0.000010            | <0.000010             |                    |                       |          |
| Thorium, total                               | 7440-29-1 E420/VA     | 0.00010      | mg/L             | < 0.00010            | <0.00010              |                    |                       |          |
| Tin, total                                   | 7440-31-5 E420/VA     | 0.00010      | mg/L             | < 0.00010            | <0.00010              |                    |                       |          |
| Titanium, total                              | 7440-32-6 E420/VA     | 0.00030      | mg/L             | < 0.00030            | <0.00030              |                    |                       |          |
| Tungsten, total                              | 7440-33-7 E420/VA     | 0.00010      | mg/L             | < 0.00010            | <0.00010              |                    |                       |          |
| Uranium, total                               | 7440-61-1 E420/VA     | 0.000010     | mg/L             | 0.000062             | <0.000010             | _                  |                       |          |
| Vanadium, total                              | 7440-62-2 E420/VA     | 0.00050      | mg/L             | < 0.00050            | <0.00050              | -                  |                       |          |
| Zinc, total                                  | 7440-66-6 E420/VA     | 0.0030       | mg/L             | <0.0030              | 0.0041                | -                  |                       |          |
| Zirconium, total                             | 7440-67-7 E420/VA     | 0.00020      | mg/L             | <0.00020             | <0.00020              | _                  |                       |          |
| Aggregate Organics                           |                       | The second   |                  |                      |                       |                    |                       |          |
| Biochemical oxygen demand [BOD]              | E550/VA               | 2.0          | mg/L             | <2.0                 | <2.0                  |                    |                       |          |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

 Page
 :
 5 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

ALS

Project : ----

## Analytical Results

| (Matrix: Water)                       |            |            | (a) (b) (c) |                  | First Draw           |                      | First Draw                              |                      | First Draw           |
|---------------------------------------|------------|------------|-------------|------------------|----------------------|----------------------|-----------------------------------------|----------------------|----------------------|
| 2-14                                  |            |            |             |                  |                      |                      | 110000000000000000000000000000000000000 |                      | I II St Diaw         |
| 4-4-                                  |            |            | Client samp | ling date / time | 19-Mar-2024<br>10:20 | 19-Mar-2024<br>10:20 | 19-Mar-2024<br>09:35                    | 19-Mar-2024<br>09:35 | 19-Mar-2024<br>07:00 |
| Analyte                               | CAS Number | Method/Lab | LOR         | Unit             | VA24A5754-001        | VA24A5754-002        | VA24A5754-003                           | VA24A5754-004        | VA24A5754-005        |
|                                       |            |            |             |                  | Result               | Result               | Result                                  | Result               | Result               |
| Physical Tests                        |            |            |             |                  |                      |                      |                                         |                      |                      |
| Alkalinity, total (as CaCO3)          | 10.00      | E290/VA    | 1.0         | mg/L             |                      | 4.3                  | 497                                     | 4.2                  | 1000                 |
| Hardness (as CaCO3), from total Ca/Mg | TO CO.     | EC100A/VA  | 0.50        | mg/L             | 5.19                 | 4.35                 | 5.04                                    | 4.56                 | 5.81                 |
| pH                                    | T0-030     | E108/VA    | 0.10        | pH units         | -                    | 6.58                 | ATT 1                                   | 6.61                 | 9377                 |
| Solids, total suspended [TSS]         | 1000       | E160/VA    | 3.0         | mg/L             | (50)                 | <3.0                 | 200                                     | <3.0                 | 355                  |
| Turbidity                             | 1000       | E121/VA    | 0.10        | NTU              | -                    | <0.10                | A. 100 A.                               | <0.10                | 9.555                |
| Organic / Inorganic Carbon            |            |            |             |                  |                      |                      |                                         |                      |                      |
| Carbon, total organic [TOC]           |            | E355-L/VA  | 0.50        | mg/L             | -                    | 2.23                 | A TOTAL                                 | 1.78                 | 10000                |
| Total Metals                          |            |            |             |                  |                      |                      |                                         |                      |                      |
| Aluminum, total                       | 7429-90-5  | E420/VA    | 0.0030      | mg/L             | 0.0542               | 0.0624               | 0.0583                                  | 0.0588               | 0.0594               |
| Antimony, total                       | 7440-36-0  | E420/VA    | 0.00010     | mg/L             | < 0.00010            | <0.00010             | <0.00010                                | <0.00010             | <0.00010             |
| Arsenic, total                        | 7440-38-2  | E420/VA    | 0.00010     | mg/L             | 0.00011              | 0.00011              | 0.00013                                 | 0.00012              | 0.00015              |
| Barium, total                         | 7440-39-3  | E420/VA    | 0.00010     | mg/L             | 0.00208              | 0.00137              | 0.00150                                 | 0.00136              | 0.00160              |
| Beryllium, total                      | 7440-41-7  | E420/VA    | 0.000020    | mg/L             | <0.000020            | <0.000020            | <0.000020                               | <0.000020            | <0.000020            |
| Bismuth, total                        | 7440-69-9  | E420/VA    | 0.000050    | mg/L             | <0.000050            | <0.000050            | < 0.000050                              | <0.000050            | 0.000062             |
| Boron, total                          | 7440-42-8  | E420/VA    | 0.010       | mg/L             | <0.010               | <0.010               | <0.010                                  | <0.010               | <0.010               |
| Cadmium, total                        | 7440-43-9  |            | 0.0000050   | mg/L             | 0.0000291            | <0.0000050           | <0.0000050                              | <0.0000050           | <0.0000050           |
| Calcium, total                        | 7440-70-2  |            | 0.050       | mg/L             | 1.70                 | 1.41                 | 1.54                                    | 1.50                 | 1.90                 |
| Cesium, total                         | 7440-46-2  | E420/VA    | 0.000010    | mg/L             | <0.000010            | <0.000010            | < 0.000010                              | <0.000010            | <0.000010            |
| Chromium, total                       | 7440-47-3  | E420/VA    | 0.00050     | mg/L             | < 0.00050            | <0.00050             | < 0.00050                               | <0.00050             | 0.00111              |
| Cobalt, total                         | 7440-48-4  |            | 0.00010     | mg/L             | < 0.00010            | <0.00010             | 0.00026                                 | <0.00010             | <0.00010             |
| Copper, total                         | 7440-50-8  |            | 0.00050     | mg/L             | 0.714                | 0.00638              | 0.0511                                  | 0.00617              | 0.00124              |
| Iron, total                           | 7439-89-6  | E420/VA    | 0.010       | mg/L             | 0.018                | < 0.010              | 0.032                                   | 0.030                | 0.014                |
| Lead, total                           | 7439-92-1  |            | 0.000050    | mg/L             | 0.00474              | 0.000065             | 0.00283                                 | 0.000416             | 0.000051             |
| Lithium, total                        | 7439-93-2  |            | 0.0010      | mg/L             | <0.0010              | <0.0010              | <0.0010                                 | <0.0010              | <0.0010              |
| Magnesium, total                      | 7439-95-4  |            | 0.0050      | mg/L             | 0.230                | 0.201                | 0.291                                   | 0.199                | 0.258                |
| Manganese, total                      | 7439-96-5  |            | 0.00010     | mg/L             | 0.00132              | 0.00031              | 0.00085                                 | 0.00038              | 0.00109              |
| Mercury, total                        | 7439-97-6  |            | 0.0000050   | mg/L             | _                    | <0.0000050           | _                                       | <0.0000050           |                      |
| Molybdenum, total                     | 7439-98-7  |            | 0.000050    | mg/L             | 0.000228             | 0.000227             | 0.000252                                | 0.000240             | 0.000332             |
| Nickel, total                         | 7440-02-0  |            | 0.00050     | mg/L             | 0.00064              | <0.00050             | 0.00134                                 | <0.00050             | 0.00065              |
| Phosphorus, total                     | 7723-14-0  |            | 0.050       | mg/L             | <0.050               | <0.050               | <0.050                                  | <0.050               | < 0.050              |

 Page
 :
 6 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

Project : ----



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |                       | Cli          | ent sample ID   | Harvey Tank<br>First Draw | Harvey Tank          | Store / Cafe<br>First Draw | Store / Cafe         | Lions Bay Ave.<br>First Draw |
|--------------------------------------|-----------------------|--------------|-----------------|---------------------------|----------------------|----------------------------|----------------------|------------------------------|
|                                      |                       | Client sampl | ing date / time | 19-Mar-2024<br>10:20      | 19-Mar-2024<br>10:20 | 19-Mar-2024<br>09:35       | 19-Mar-2024<br>09:35 | 19-Mar-2024<br>07:00         |
| Analyte                              | CAS Number Method/Lab | LOR          | Unit            | VA24A5754-001             | VA24A5754-002        | VA24A5754-003              | VA24A5754-004        | VA24A5754-005                |
|                                      |                       |              |                 | Result                    | Result               | Result                     | Result               | Result                       |
| Total Metals                         |                       |              |                 |                           |                      |                            |                      |                              |
| Potassium, total                     | 7440-09-7 E420/VA     | 0.050        | mg/L            | 0.084                     | 0.084                | 0.085                      | 0.082                | 0.102                        |
| Rubidium, total                      | 7440-17-7 E420/VA     | 0.00020      | mg/L            | < 0.00020                 | <0.00020             | < 0.00020                  | <0.00020             | <0.00020                     |
| Selenium, total                      | 7782-49-2 E420/VA     | 0.000050     | mg/L            | <0.000050                 | <0.000050            | <0.000050                  | <0.000050            | <0.000050                    |
| Silicon, total                       | 7440-21-3 E420/VA     | 0.10         | mg/L            | 2.14                      | 1.94                 | 2.13                       | 2.04                 | 2.43                         |
| Silver, total                        | 7440-22-4 E420/VA     | 0.000010     | mg/L            | <0.000010                 | <0.000010            | <0.000010                  | <0.000010            | <0.000010                    |
| Sodium, total                        | 7440-23-5 E420/VA     | 0.050        | mg/L            | 2.13                      | 2.08                 | 2.15                       | 2.12                 | 2.25                         |
| Strontium, total                     | 7440-24-8 E420/VA     | 0.00020      | mg/L            | 0.00543                   | 0.00437              | 0.00461                    | 0.00454              | 0.00554                      |
| Sulfur, total                        | 7704-34-9 E420/VA     | 0.50         | mg/L            | < 0.50                    | <0.50                | <0.50                      | <0.50                | 0.50                         |
| Tellurium, total                     | 13494-80-9 E420/VA    | 0.00020      | mg/L            | < 0.00020                 | <0.00020             | < 0.00020                  | <0.00020             | <0.00020                     |
| Thallium, total                      | 7440-28-0 E420/VA     | 0.000010     | mg/L            | <0.000010                 | <0.000010            | <0.000010                  | <0.000010            | <0.000010                    |
| Thorium, total                       | 7440-29-1 E420/VA     | 0.00010      | mg/L            | < 0.00010                 | <0.00010             | <0.00010                   | <0.00010             | <0.00010                     |
| Tin, total                           | 7440-31-5 E420/VA     | 0.00010      | mg/L            | < 0.00010                 | <0.00010             | < 0.00010                  | <0.00010             | <0.00010                     |
| Titanium, total                      | 7440-32-8 E420/VA     | 0.00030      | mg/L            | 0.00057                   | <0.00030             | < 0.00030                  | < 0.00030            | <0.00030                     |
| Tungsten, total                      | 7440-33-7 E420/VA     | 0.00010      | mg/L            | < 0.00010                 | <0.00010             | < 0.00010                  | <0.00010             | <0.00010                     |
| Uranium, total                       | 7440-61-1 E420/VA     | 0.000010     | mg/L            | 0.000036                  | 0.000067             | 0.000064                   | 0.000067             | 0.000068                     |
| Vanadium, total                      | 7440-62-2 E420/VA     | 0.00050      | mg/L            | < 0.00050                 | <0.00050             | <0.00050                   | <0.00050             | <0.00050                     |
| Zinc, total                          | 7440-66-6 E420/VA     | 0.0030       | mg/L            | 0.134                     | <0.0030              | 0.0238                     | <0.0030              | < 0.0030                     |
| Zirconium, total                     | 7440-67-7 E420/VA     | 0.00020      | mg/L            | <0.00020                  | <0.00020             | <0.00020                   | <0.00020             | <0.00020                     |
| Aggregate Organics                   |                       |              |                 |                           |                      |                            |                      |                              |
| Biochemical oxygen demand [BOD]      | E550/VA               | 2.0          | mg/L            |                           | <2.0                 |                            | <2.0                 |                              |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 7 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

 Project
 :
 ---



#### Analytical Results

| and the Committee of th |                  |            |             | to the first     | 1000-1000-1000-1000-1000-1000-1000-100 | 200200000000000000000000000000000000000 | 10/10/20/20/20/20/20/20/20/20/20/20/20/20/20 | 120000000000000000000000000000000000000 | 75.50 75.50 75.00 75.00 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-------------|------------------|----------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------|-------------------------|
| Sub-Matrix: Water<br>(Matrix: Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |            | Ci          | ient sample ID   | Lions Bay Ave.                         | Kelvin Grove<br>First Draw              | Kelvin Grove                                 | Community<br>Centre<br>First Draw       | Community<br>Centre     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 177        | Client samp | ling date / time | 19-Mar-2024<br>07:00                   | 19-Mar-2024<br>05:35                    | 19-Mar-2024<br>05:35                         | 19-Mar-2024<br>06:25                    | 19-Mar-2024<br>06:25    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAS Number       | Method/Lab | LOR         | Unit             | VA24A5754-006                          | VA24A5754-007                           | VA24A5754-008                                | VA24A5754-009                           | VA24A5754-010           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENTREM TAP SUNTY |            |             |                  | Result                                 | Result                                  | Result                                       | Result                                  | Result                  |
| Physical Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Ale        |             |                  |                                        | 7                                       |                                              |                                         |                         |
| Alkalinity, total (as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (200             | E290/VA    | 1.0         | mg/L             | 5.0                                    | 7                                       | 5.1                                          | 1242                                    | 5.0                     |
| Hardness (as CaCO3), from total Ca/Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (200             | EC100A/VA  | 0.50        | mg/L             | 5.36                                   | 8.50                                    | 5.43                                         | 9.38                                    | 5.03                    |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> 122</u>      | E108/VA    | 0.10        | pH units         | 6.66                                   | 23-0                                    | 6.67                                         |                                         | 6.64                    |
| Solids, total suspended [TSS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>122</u>       | E160/VA    | 3.0         | mg/L             | <3.0                                   | 23-0-2                                  | <3.0                                         | 1242                                    | <3.0                    |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>         | E121/VA    | 0.10        | NTU              | <0.10                                  | 7 <del></del>                           | <0.10                                        | 1244                                    | <0.10                   |
| Organic / Inorganic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 200        |             |                  |                                        |                                         |                                              |                                         | 200                     |
| Carbon, total organic [TOC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122              | E355-L/VA  | 0.50        | mg/L             | 2.04                                   | _                                       | 1.96                                         | 222                                     | 1.83                    |
| Total Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 27         |             |                  |                                        |                                         |                                              |                                         |                         |
| Aluminum, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7429-90-5        | E420/VA    | 0.0030      | mg/L             | 0.0627                                 | 0.0436                                  | 0.0625                                       | 0.0390                                  | 0.0580                  |
| Antimony, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-36-0        | E420/VA    | 0.00010     | mg/L             | < 0.00010                              | <0.00010                                | <0.00010                                     | <0.00010                                | <0.00010                |
| Arsenic, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-38-2        | E420/VA    | 0.00010     | mg/L             | 0.00013                                | 0.00016                                 | 0.00014                                      | 0.00014                                 | 0.00012                 |
| Barium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-39-3        | E420/VA    | 0.00010     | mg/L             | 0.00148                                | 0.00238                                 | 0.00165                                      | 0.00147                                 | 0.00134                 |
| Beryllium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-41-7        | E420/VA    | 0.000020    | mg/L             | <0.000020                              | <0.000020                               | <0.000020                                    | <0.000020                               | <0.000020               |
| Bismuth, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-69-9        |            | 0.000050    | mg/L             | <0.000050                              | <0.000050                               | <0.000050                                    | 0.00196                                 | <0.000050               |
| Boron, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-42-8        |            | 0.010       | mg/L             | < 0.010                                | 0.021                                   | <0.010                                       | 0.018                                   | < 0.010                 |
| Cadmium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-43-9        | E420/VA    | 0.0000050   | mg/L             | <0.0000050                             | 0.0000065                               | <0.0000050                                   | <0.0000050                              | <0.0000050              |
| Calcium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-70-2        | E420/VA    | 0.050       | mg/L             | 1.75                                   | 2.23                                    | 1.81                                         | 1.86                                    | 1.68                    |
| Cesium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-46-2        | E420/VA    | 0.000010    | mg/L             | <0.000010                              | <0.000010                               | <0.000010                                    | <0.000010                               | <0.000010               |
| Chromium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-47-3        | E420/VA    | 0.00050     | mg/L             | < 0.00050                              | <0.00050                                | < 0.00050                                    | <0.00050                                | <0.00050                |
| Cobalt, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-48-4        |            | 0.00010     | mg/L             | <0.00010                               | 0.00024                                 | <0.00010                                     | <0.00010                                | <0.00010                |
| Copper, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-50-8        | E420/VA    | 0.00050     | mg/L             | 0.00090                                | 0.0994                                  | 0.00409                                      | 0.125                                   | 0.0178                  |
| Iron, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7439-89-6        |            | 0.010       | mg/L             | 0.012                                  | 0.263                                   | 0.025                                        | 0.016                                   | 0.032                   |
| Lead, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7439-92-1        |            | 0.000050    | mg/L             | <0.000050                              | 0.00874                                 | 0.000247                                     | 0.00138                                 | 0.000104                |
| Lithium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-93-2        |            | 0.0010      | mg/L             | <0.0010                                | 0.0044                                  | <0.0010                                      | 0.0022                                  | <0.0010                 |
| Magnesium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7439-95-4        |            | 0.0050      | mg/L             | 0.240                                  | 0.712                                   | 0.222                                        | 1.15                                    | 0.203                   |
| Manganese, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7439-96-5        |            | 0.00010     | mg/L             | 0.00024                                | 0.00547                                 | 0.00034                                      | 0.00031                                 | 0.00037                 |
| Mercury, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-97-8        |            | 0.0000050   | mg/L             | <0.000050                              | 74777 T                                 | <0.000050                                    | 0.00001                                 | <0.0000050              |
| Molybdenum, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7439-98-7        |            | 0.000050    | mg/L             | 0.000273                               | 0.000273                                | 0.000261                                     | 0.000262                                | 0.000234                |
| Nickel, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-02-0        |            | 0.00050     | mg/L             | <0.00050                               | 0.00318                                 | <0.00050                                     | 0.00062                                 | <0.00050                |

 Page
 :
 8 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay



Project : ----

## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |                       | Clie          | ent sample ID   | Lions Bay Ave.       | Kelvin Grove<br>First Draw | Kelvin Grove         | Community<br>Centre<br>First Draw | Community<br>Centre  |
|--------------------------------------|-----------------------|---------------|-----------------|----------------------|----------------------------|----------------------|-----------------------------------|----------------------|
|                                      |                       | Client sampli | ing date / time | 19-Mar-2024<br>07:00 | 19-Mar-2024<br>05:35       | 19-Mar-2024<br>05:35 | 19-Mar-2024<br>06:25              | 19-Mar-2024<br>06:25 |
| Analyte                              | CAS Number Method/Lab | LOR           | Unit            | VA24A5754-006        | VA24A5754-007              | VA24A5754-008        | VA24A5754-009                     | VA24A5754-010        |
|                                      |                       |               |                 | Result               | Result                     | Result               | Result                            | Result               |
| Total Metals                         |                       |               |                 |                      |                            |                      |                                   |                      |
| Phosphorus, total                    | 7723-14-0 E420/VA     | 0.050         | mg/L            | <0.050               | < 0.050                    | <0.050               | <0.050                            | < 0.050              |
| Potassium, total                     | 7440-09-7 E420/VA     | 0.050         | mg/L            | 0.094                | 0.099                      | 0.087                | 0.092                             | 0.084                |
| Rubidium, total                      | 7440-17-7 E420/VA     | 0.00020       | mg/L            | 0.00021              | <0.00020                   | <0.00020             | 0.00021                           | <0.00020             |
| Selenium, total                      | 7782-49-2 E420/VA     | 0.000050      | mg/L            | <0.000050            | <0.000050                  | <0.000050            | <0.000050                         | <0.000050            |
| Silicon, total                       | 7440-21-3 E420/VA     | 0.10          | mg/L            | 2.25                 | 2.17                       | 2.20                 | 2.09                              | 2.04                 |
| Silver, total                        | 7440-22-4 E420/VA     | 0.000010      | mg/L            | <0.000010            | <0.000010                  | <0.000010            | <0.000010                         | <0.000010            |
| Sodium, total                        | 7440-23-5 E420/VA     | 0.050         | mg/L            | 2.27                 | 2.36                       | 2.23                 | 2.26                              | 2.12                 |
| Strontium, total                     | 7440-24-8 E420/VA     | 0.00020       | mg/L            | 0.00510              | 0.00567                    | 0.00480              | 0.00522                           | 0.00492              |
| Sulfur, total                        | 7704-34-9 E420/VA     | 0.50          | mg/L            | < 0.50               | <0.50                      | < 0.50               | 0.52                              | <0.50                |
| Tellurium, total                     | 13494-80-9 E420/VA    | 0.00020       | mg/L            | <0.00020             | < 0.00020                  | < 0.00020            | <0.00020                          | <0.00020             |
| Thallium, total                      | 7440-28-0 E420/VA     | 0.000010      | mg/L            | <0.000010            | < 0.000010                 | <0.000010            | <0.000010                         | <0.000010            |
| Thorium, total                       | 7440-29-1 E420/VA     | 0.00010       | mg/L            | < 0.00010            | <0.00010                   | < 0.00010            | <0.00010                          | <0.00010             |
| Tin, total                           | 7440-31-5 E420/VA     | 0.00010       | mg/L            | < 0.00010            | < 0.00010                  | < 0.00010            | 0.00063                           | <0.00010             |
| Titanium, total                      | 7440-32-8 E420/VA     | 0.00030       | mg/L            | <0.00030             | <0.00030                   | <0.00030             | <0.00030                          | <0.00030             |
| Tungsten, total                      | 7440-33-7 E420/VA     | 0.00010       | mg/L            | < 0.00010            | <0.00010                   | < 0.00010            | <0.00010                          | <0.00010             |
| Uranium, total                       | 7440-81-1 E420/VA     | 0.000010      | mg/L            | 0.000072             | 0.000050                   | 0.000069             | 0.000026                          | 0.000068             |
| Vanadium, total                      | 7440-62-2 E420/VA     | 0.00050       | mg/L            | <0.00050             | <0.00050                   | <0.00050             | <0.00050                          | <0.00050             |
| Zinc, total                          | 7440-86-8 E420/VA     | 0.0030        | mg/L            | <0.0030              | 0.0569                     | <0.0030              | 0.133                             | <0.0030              |
| Zirconium, total                     | 7440-67-7 E420/VA     | 0.00020       | mg/L            | <0.00020             | <0.00020                   | <0.00020             | <0.00020                          | <0.00020             |
| Aggregate Organics                   |                       |               |                 |                      |                            |                      | 0                                 | Oc. Contestioner     |
| Biochemical oxygen demand [BOD]      | E550/VA               | 2.0           | mg/L            | <2.0                 | 822                        | <2.0                 |                                   | <2.0                 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 9 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

 Project
 :
 --



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)  |                 |                                             | 50200 E90 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                  |                      |                      |                       |                      | Lions Bay<br>Beach Park<br>First Draw |
|---------------------------------------|-----------------|---------------------------------------------|-------------------------------------------------|------------------|----------------------|----------------------|-----------------------|----------------------|---------------------------------------|
|                                       |                 |                                             | Client samp                                     | ling date / time | 19-Mar-2024<br>11:10 | 19-Mar-2024<br>11:10 | 19-Mar-2024<br>08:45  | 19-Mar-2024<br>08:45 | 19-Mar-2024<br>07:35                  |
| Analyte                               | CAS Number      | Method/Lab                                  | LOR                                             | Unit             | VA24A5754-011        | VA24A5754-012        | VA24A5754-013         | VA24A5754-014        | VA24A5754-015                         |
|                                       | ENGLES TO MINES |                                             |                                                 |                  | Result               | Result               | Result                | Result               | Result                                |
| Physical Tests                        |                 |                                             |                                                 |                  |                      |                      |                       |                      |                                       |
| Alkalinity, total (as CaCO3)          | 200             | E290/VA                                     | 1.0                                             | mg/L             |                      | 4.7                  | 5 <del>330</del> 5    | 4.7                  |                                       |
| Hardness (as CaCO3), from total Ca/Mg | 200             | EC100A/VA                                   | 0.50                                            | mg/L             | 11.3                 | 10.3                 | 5.24                  | 5.13                 | 5.20                                  |
| pH                                    | <u> </u>        | E108/VA                                     | 0.10                                            | pH units         |                      | 6.65                 | 5 <del>220</del> 8    | 6.67                 | -                                     |
| Solids, total suspended [TSS]         | 922             | E160/VA                                     | 3.0                                             | mg/L             |                      | <3.0                 | (1 <del>1111</del> )( | <3.0                 |                                       |
| Turbidity                             | 923             | E121/VA                                     | 0.10                                            | NTU              |                      | 0.50                 | ( <del>122</del> )    | <0.10                | (3222)                                |
| Organic / Inorganic Carbon            |                 |                                             |                                                 |                  |                      |                      |                       |                      | 01                                    |
| Carbon, total organic [TOC]           | <u>(28</u>      | E355-L/VA                                   | 0.50                                            | mg/L             | 1222                 | 1.42                 | 3443                  | 1.89                 | (322)                                 |
| Total Metals                          |                 | 0.7                                         |                                                 |                  |                      |                      |                       |                      |                                       |
| Aluminum, total                       | 7429-90-5       | E420/VA                                     | 0.0030                                          | mg/L             | 0.0302               | 0.0572               | 0.0639                | 0.0631               | 0.0440                                |
| Antimony, total                       | 7440-36-0       | E420/VA                                     | 0.00010                                         | mg/L             | < 0.00010            | <0.00010             | <0.00010              | <0.00010             | <0.00010                              |
| Arsenic, total                        | 7440-38-2       | E420/VA                                     | 0.00010                                         | mg/L             | 0.00011              | 0.00015              | 0.00012               | 0.00014              | 0.00013                               |
| Barium, total                         | 7440-39-3       | E420/VA                                     | 0.00010                                         | mg/L             | 0.00212              | 0.00185              | 0.00155               | 0.00150              | 0.00169                               |
| Beryllium, total                      | 7440-41-7       | E420/VA                                     | 0.000020                                        | mg/L             | <0.000020            | <0.000020            | <0.000020             | <0.000020            | <0.000020                             |
| Bismuth, total                        | 7440-69-9       | E420/VA                                     | 0.000050                                        | mg/L             | <0.000050            | <0.000050            | < 0.000050            | <0.000050            | 0.000052                              |
| Boron, total                          | 7440-42-8       | E420/VA                                     | 0.010                                           | mg/L             | <0.010               | <0.010               | <0.010                | <0.010               | < 0.010                               |
| Cadmium, total                        | 7440-43-9       | E420/VA                                     | 0.0000050                                       | mg/L             | 0.0000608            | 0.0000187            | <0.0000050            | <0.0000050           | 0.0000089                             |
| Calcium, total                        | 7440-70-2       | E420/VA                                     | 0.050                                           | mg/L             | 3.65                 | 3.27                 | 1.72                  | 1.68                 | 1.69                                  |
| Cesium, total                         | 7440-46-2       | E420/VA                                     | 0.000010                                        | mg/L             | <0.000010            | <0.000010            | <0.000010             | <0.000010            | <0.000010                             |
| Chromium, total                       | 7440-47-3       | E420/VA                                     | 0.00050                                         | mg/L             | < 0.00050            | <0.00050             | < 0.00050             | <0.00050             | <0.00050                              |
| Cobalt, total                         | 7440-48-4       | E420/VA                                     | 0.00010                                         | mg/L             | < 0.00010            | <0.00010             | <0.00010              | <0.00010             | <0.00010                              |
| Copper, total                         | 7440-50-8       | E420/VA                                     | 0.00050                                         | mg/L             | 0.753                | 0.00509              | 0.00104               | 0.00082              | 0.208                                 |
| Iron, total                           | 7439-89-8       | E420/VA                                     | 0.010                                           | mg/L             | 0.016                | 0.021                | 0.019                 | 0.017                | 0.024                                 |
| Lead, total                           | 7439-92-1       | M 300 (100 (100 (100 (100 (100 (100 (100    | 0.000050                                        | mg/L             | 0.00151              | <0.000050            | <0.000050             | <0.000050            | 0.0131                                |
| Lithium, total                        | 7439-93-2       |                                             | 0.0010                                          | mg/L             | <0.0010              | <0.0010              | <0.0010               | <0.0010              | <0.0010                               |
| Magnesium, total                      | 7439-95-4       | - 10 CO | 0.0050                                          | mg/L             | 0.534                | 0.511                | 0.230                 | 0.227                | 0.238                                 |
| Manganese, total                      | 7439-96-5       |                                             | 0.00010                                         | mg/L             | 0.00127              | 0.00105              | 0.00036               | 0.00032              | 0.00046                               |
| Mercury, total                        | 7439-97-8       | E508/VA                                     | 0.0000050                                       | mg/L             | 4.000 (100)          | <0.0000050           | 57 <u>5772</u> 5.     | <0.0000050           |                                       |
| Molybdenum, total                     | 7439-98-7       |                                             | 0.000050                                        | mg/L             | 0.000172             | 0.000171             | 0.000252              | 0.000261             | 0.000244                              |
| Nickel, total                         | 7440-02-0       |                                             | 0.00050                                         | mg/L             | 0.00127              | <0.00050             | <0.00050              | <0.00050             | 0.00083                               |

 Page
 :
 10 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

 Project
 :
 ---



Analytical Results

| Analytical Results                   |             |            |               |                 |                             |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-------------|------------|---------------|-----------------|-----------------------------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-Matrix: Water<br>(Matrix: Water) |             |            | Clie          | ent sample ID   | Magnesia Tank<br>First Draw | Magnesia Tank        | Brunswick<br>Beach   | Brunswick<br>Beach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lions Bay<br>Beach Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      |             |            |               |                 |                             |                      | First Draw           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | First Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      |             |            | Client sample | ing date / time | 19-Mar-2024<br>11:10        | 19-Mar-2024<br>11:10 | 19-Mar-2024<br>08:45 | 19-Mar-2024<br>08:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19-Mar-2024<br>07:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analyte                              | CAS Number  | Method/Lab | LOR           | Unit            | VA24A5754-011               | VA24A5754-012        | VA24A5754-013        | VA24A5754-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VA24A5754-015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      |             |            |               |                 | Result                      | Result               | Result               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Metals                         |             |            |               |                 |                             |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phosphorus, total                    | 7723-14-0 E | E420/VA    | 0.050         | mg/L            | <0.050                      | <0.050               | <0.050               | <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potassium, total                     | 7440-09-7   | E420/VA    | 0.050         | mg/L            | 0.091                       | 0.095                | 0.088                | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rubidium, total                      | 7440-17-7 E | E420/VA    | 0.00020       | mg/L            | <0.00020                    | <0.00020             | <0.00020             | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Selenium, total                      | 7782-49-2 E | E420/VA    | 0.000050      | mg/L            | 0.000127                    | 0.000137             | <0.000050            | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Silicon, total                       | 7440-21-3 E | E420/VA    | 0.10          | mg/L            | 4.71                        | 4.57                 | 2.14                 | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Silver, total                        | 7440-22-4   | E420/VA    | 0.000010      | mg/L            | 0.000011                    | <0.000010            | <0.000010            | <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sodium, total                        | 7440-23-5   | E420/VA    | 0.050         | mg/L            | 3.14                        | 3.06                 | 2.25                 | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strontium, total                     | 7440-24-6   | E420/VA    | 0.00020       | mg/L            | 0.0191                      | 0.0169               | 0.00510              | 0.00511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sulfur, total                        | 7704-34-9   | E420/VA    | 0.50          | mg/L            | 2.97                        | 2.64                 | < 0.50               | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tellurium, total                     | 13494-80-9  | E420/VA    | 0.00020       | mg/L            | < 0.00020                   | <0.00020             | < 0.00020            | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Thallium, total                      | 7440-28-0 E | E420/VA    | 0.000010      | mg/L            | <0.000010                   | <0.000010            | <0.000010            | <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Thorium, total                       | 7440-29-1   | E420/VA    | 0.00010       | mg/L            | < 0.00010                   | <0.00010             | <0.00010             | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tin, total                           | 7440-31-5   | E420/VA    | 0.00010       | mg/L            | <0.00010                    | <0.00010             | < 0.00010            | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Titanium, total                      | 7440-32-8 E | E420/VA    | 0.00030       | mg/L            | 0.00032                     | 0.00040              | <0.00030             | 0.00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tungsten, total                      | 7440-33-7 E |            | 0.00010       | mg/L            | <0.00010                    | <0.00010             | <0.00010             | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Uranium, total                       | 7440-61-1   |            | 0.000010      | mg/L            | <0.000010                   | <0.000010            | 0.000071             | 0.000070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vanadium, total                      | 7440-62-2   |            | 0.00050       | mg/L            | <0.00050                    | <0.00050             | <0.00050             | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zinc, total                          | 7440-66-6   |            | 0.0030        | mg/L            | 0.168                       | <0.0030              | <0.0030              | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Zirconium, total                     | 7440-67-7   |            | 0.00020       | mg/L            | <0.00020                    | <0.00020             | <0.00020             | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aggregate Organics                   |             |            |               |                 |                             |                      |                      | CONTRACTOR OF THE PARTY OF THE | The annual of the second of th |
| Biochemical oxygen demand [BOD]      | 6           | 550/VA     | 2.0           | mg/L            | 1252                        | <2.0                 | 3 <u>144</u> 3       | <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 11 of 12

 Work Order
 :
 VA24A5754

 Client
 :
 Village of Lions Bay

Project : ---



#### Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            | Cl          | ient sample ID   | Lions Bay<br>Beach Park |                      | NTT-X           | 1,5777). | 7775                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|-------------|------------------|-------------------------|----------------------|-----------------|----------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | Client samp | ling date / time | 19-Mar-2024<br>07:35    |                      | 1               |          |                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAS Number    | Method/Lab | LOR         | Unit             | VA24A5754-016           | \ <del></del>        |                 | 1777770  | 1 <del>777777</del> 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | 10-         |                  | Result                  | -                    | 10.77           | 707.5    | (7.75)<br>2           |
| Physical Tests Alkalinity, total (as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E29           | 90/VA      | 1.0         | mg/L             | 4.1                     | 1                    |                 | 1        |                       |
| Hardness (as CaCO3), from total Ca/Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15-03-15-0    | 100A/VA    | 0.50        | mg/L             | 4.76                    | 34.008               | 47764           | 1500     | 33104                 |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E10           |            | 0.10        | pH units         | 6.58                    | 34.555.6             |                 |          | 10.000                |
| Solids, total suspended [TSS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E16           |            | 3.0         | mg/L             | <3.0                    | 34.777.8             | 1227            |          | 10.000                |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total 1/2     | 21/VA      | 0.10        | NTU              | <0.10                   | 340034               | 2000            | 86.6     |                       |
| the same of the sa | E12           | 21/VA      | 0.10        | NIO              | VO. 10                  | A-OUR                | 2.00            | 100,70   |                       |
| Organic / Inorganic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | least least   | 55-L/VA    | 0.50        |                  | 1.94                    |                      |                 | 1        |                       |
| Carbon, total organic [TOC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E30           | SS-D VA    | 0.50        | mg/L             | 1.84                    | 34-77-78             | 27772           | 277      | 91 <del>777</del> 9   |
| Total Metals<br>Aluminum, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0004       | 0.0000      |                  | 0.0000                  |                      |                 |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7429-90-5 E42 |            | 0.0030      | mg/L             | 0.0626                  | 1.5                  | (277.5)         |          | 97000                 |
| Antimony, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-36-0 E42 |            | 0.00010     | mg/L             | <0.00010                | 10.000               | (200            |          | 10.7mm                |
| Arsenic, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-38-2 E42 |            | 0.00010     | mg/L             | 0.00013                 | 1.55                 | (2007)          |          | 100000                |
| Barium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-39-3 E42 |            | 0.00010     | mg/L             | 0.00153                 | 1.55                 | (277.5)         |          | 10.75                 |
| Beryllium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-41-7 E42 |            | 0.000020    | mg/L             | <0.000020               | 3.550                | (277.5)         |          | 1975                  |
| Bismuth, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-69-9 E42 |            | 0.000050    | mg/L             | <0.000050               | 10.000               | 1270            |          | 0                     |
| Boron, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-42-8 E42 |            | 0.010       | mg/L             | <0.010                  | 90.000               | (277.0)         |          | 0.000                 |
| Cadmium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-43-9 E42 |            | 0.0000050   | mg/L             | <0.0000050              | 10.000               | (277.0)         |          | 0.757                 |
| Calcium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-70-2 E42 | 20/VA      | 0.050       | mg/L             | 1.55                    |                      | (               |          | -                     |
| Cesium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-46-2 E42 | 20/VA      | 0.000010    | mg/L             | <0.000010               | 10 <del>-11</del> 2  | 2               |          | Ma <del>rana</del> ka |
| Chromium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-47-3 E42 | 20/VA      | 0.00050     | mg/L             | <0.00050                | 10 <del>-111</del> 2 | 2.00            |          | Ma <del>rana</del> (a |
| Cobalt, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-48-4 E42 | 20/VA      | 0.00010     | mg/L             | <0.00010                | 10 <del>-11-</del> 0 | 2               |          | 10.00                 |
| Copper, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-50-8 E42 | 20/VA      | 0.00050     | mg/L             | 0.0201                  |                      | 2               |          |                       |
| Iron, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7439-89-6 E42 | 20/VA      | 0.010       | mg/L             | 0.010                   | 1 <del></del> 1      | 33              |          | (1) <del></del> /-    |
| Lead, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7439-92-1 E42 | 20/VA      | 0.000050    | mg/L             | 0.000424                |                      | 33              |          | 10,000                |
| Lithium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-93-2 E42 | 20/VA      | 0.0010      | mg/L             | <0.0010                 | 1 I                  | 3 <del></del> 3 |          |                       |
| Magnesium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7439-95-4 E42 | 20/VA      | 0.0050      | mg/L             | 0.216                   | 1 I                  | 3               |          | 10.                   |
| Manganese, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7439-96-5 E42 |            | 0.00010     | mg/L             | 0.00028                 | 1                    | _               |          | 10,000                |
| Mercury, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-97-6 E50 |            | 0.0000050   | mg/L             | <0.0000050              | 1 <del></del> 1      |                 |          | No.                   |
| Molybdenum, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7439-98-7 E42 |            | 0.000050    | mg/L             | 0.000248                | -                    |                 |          |                       |
| Nickel, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-02-0 E42 |            | 0.00050     | mg/L             | <0.00050                |                      |                 |          |                       |
| Phosphorus, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7723-14-0 E42 |            | 0.050       | mg/L             | <0.050                  |                      |                 |          |                       |

Page 12 of 12 Work Order VA24A5754 Client

Village of Lions Bay

Project

#### **Analytical Results**

| Sub-Matrix: Water<br>(Matrix: Water) |                       | Clie          | ent sample ID   | Lions Bay<br>Beach Park | - <del>777</del> 2  | NETTE X         | 8.8008 | 133.45                 |
|--------------------------------------|-----------------------|---------------|-----------------|-------------------------|---------------------|-----------------|--------|------------------------|
|                                      |                       | Client sampli | ing date / time | 19-Mar-2024<br>07:35    |                     | ; <del></del> 1 |        | _                      |
| Analyte                              | CAS Number Method/Lab | LOR           | Unit            | VA24A5754-016           | ¥ <del>221111</del> |                 | -      | 1 <del>7755110</del> 6 |
|                                      |                       |               |                 | Result                  | 575                 | 107076          | 707/   | 3775                   |
| Total Metals                         |                       |               |                 |                         |                     |                 |        |                        |
| Potassium, total                     | 7440-09-7 E420/VA     | 0.050         | mg/L            | 0.083                   | 347018              | 4774            | 777    | 100                    |
| Rubidium, total                      | 7440-17-7 E420/VA     | 0.00020       | mg/L            | <0.00020                | 34770               | -               | 9777   |                        |
| Selenium, total                      | 7782-49-2 E420/VA     | 0.000050      | mg/L            | <0.000050               | 147773              |                 |        |                        |
| Silicon, total                       | 7440-21-3 E420/VA     | 0.10          | mg/L            | 2.10                    | 1.777               | -               |        |                        |
| Silver, total                        | 7440-22-4 E420/VA     | 0.000010      | mg/L            | <0.000010               |                     | -               |        |                        |
| Sodium, total                        | 7440-23-5 E420/VA     | 0.050         | mg/L            | 2.19                    |                     | -               |        |                        |
| Strontium, total                     | 7440-24-8 E420/VA     | 0.00020       | mg/L            | 0.00458                 | 1                   | -               |        |                        |
| Sulfur, total                        | 7704-34-9 E420/VA     | 0.50          | mg/L            | <0.50                   | 1                   | -               |        |                        |
| Tellurium, total                     | 13494-80-9 E420/VA    | 0.00020       | mg/L            | <0.00020                |                     | -               |        |                        |
| Thallium, total                      | 7440-28-0 E420/VA     | 0.000010      | mg/L            | <0.000010               |                     |                 |        |                        |
| Thorium, total                       | 7440-29-1 E420/VA     | 0.00010       | mg/L            | <0.00010                |                     |                 |        |                        |
| Tin, total                           | 7440-31-5 E420/VA     | 0.00010       | mg/L            | <0.00010                |                     | -               |        |                        |
| Titanium, total                      | 7440-32-8 E420/VA     | 0.00030       | mg/L            | 0.00031                 |                     |                 |        |                        |
| Tungsten, total                      | 7440-33-7 E420/VA     | 0.00010       | mg/L            | <0.00010                |                     | -               |        |                        |
| Uranium, total                       | 7440-81-1 E420/VA     | 0.000010      | mg/L            | 0.000069                |                     | -               |        |                        |
| Vanadium, total                      | 7440-62-2 E420/VA     | 0.00050       | mg/L            | <0.00050                |                     |                 |        |                        |
| Zinc, total                          | 7440-88-8 E420/VA     | 0.0030        | mg/L            | <0.0030                 |                     | -               |        |                        |
| Zirconium, total                     | 7440-67-7 E420/VA     | 0.00020       | mg/L            | <0.00020                | -                   | -               |        |                        |
| Aggregate Organics                   |                       |               |                 |                         |                     |                 |        |                        |
| Biochemical oxygen demand [BOD]      | E550/VA               | 2.0           | mg/L            | <2.0                    | 0.000               |                 |        |                        |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

# APPENDIX 5B: BIANNUAL METALS & CHEMISTRY, 17 SEP. (ABRIDGED)

 Page
 :
 3 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay



Project : ---

| Sub-Matrix: Surface Water                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Cl          | ent sample ID    | Harvey Raw           | Magnesia Raw         | 0230270            | 9400 | 2222    |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|------------------|----------------------|----------------------|--------------------|------|---------|
| (Matrix: Water)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0.1         | em dample ib     | Water                | Water                |                    |      |         |
| version                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.2               | Client samp | ling date / time | 17-Sep-2024<br>08:30 | 17-Sep-2024<br>09:55 |                    |      | -       |
| Analyte                                      | CAS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method/Lab         | LOR         | Unit             | VA24C4440-017        | VA24C4440-018        |                    | 2    | 1500000 |
| SC 200 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | Special and Control of the Control o |                    | 100000      |                  | Result               | Result               |                    |      |         |
| Physical Tests                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 4           |                  |                      |                      |                    |      |         |
| Absorbance, UV (@ 254nm)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E404/VA            | 0.0050      | AU/cm            | 0.0210               | 0.0180               | 2000               |      |         |
| Alkalinity, total (as CaCO3)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E290/VA            | 1.0         | mg/L             | 6.0                  | 5.2                  | 3 <del>-44</del> 3 |      |         |
| Hardness (as CaCO3), from total Ca/Mg        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EC100A/VA          | 0.50        | mg/L             | 6.82                 | 19.6                 | 3,000              |      |         |
| Н                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E108/VA            | 0.10        | pH units         | 7.07                 | 7.01                 | 3 <del>100</del> 0 | 222  |         |
| Solids, total suspended [TSS]                | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E160/VA            | 3.0         | mg/L             | <3.0                 | <3.0                 | 3 <del>400</del> 0 | 222  |         |
| Turbidity                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E121/VA            | 0.10        | NTU              | <0.10                | 0.15                 | 94440              |      |         |
| Transmittance, UV (@ 254nm)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E404/VA            | 1.0         | % T/cm           | 95.3                 | 95.9                 | 9400               | 222  |         |
| Organic / Inorganic Carbon                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                 |             |                  |                      | 10                   |                    |      |         |
| Carbon, total organic [TOC]                  | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E355-L/VA          | 0.50        | mg/L             | 0.64                 | <0.50                | 3,000              |      |         |
| Total Metals                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                  |                      |                      |                    |      |         |
| Aluminum, total                              | 7429-90-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.0030      | mg/L             | 0.0222               | 0.0150               | 1220               |      |         |
| Antimony, total                              | 7440-36-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00010     | mg/L             | <0.00010             | <0.00010             | 52525              |      |         |
| Arsenic, total                               | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00010     | mg/L             | <0.00010             | 0.00013              | 52525              |      |         |
| Barium, total                                | 7440-39-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00010     | mg/L             | 0.00223              | 0.00299              | 52525              |      |         |
| Beryllium, total                             | 7440-41-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.000020    | mg/L             | <0.000020            | <0.000020            | 52225              | 122  |         |
| Bismuth, total                               | 7440-69-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.000050    | mg/L             | <0.000050            | <0.000050            | 1 <u>222</u> 5     |      |         |
| Boron, total                                 | 7440-42-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.010       | mg/L             | <0.010               | 0.012                | 5 <u>222</u> 5     |      |         |
| Cadmium, total                               | 7440-43-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.0000050   | mg/L             | <0.0000050           | 0.0000207            | 1/ <u>22-0</u> 5   |      |         |
| Calcium, total                               | 7440-70-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.050       | mg/L             | 2.26                 | 6.74                 | 5 <u>22-0</u> 5    |      |         |
| Cesium, total                                | 7440-46-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 (100 Complete) | 0.000010    | mg/L             | <0.000010            | <0.000010            | 1,250              |      |         |
| Chromium, total                              | 7440-47-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00050     | mg/L             | <0.00050             | <0.00050             | 5 <u>25-0</u> 5    |      |         |
| Cobalt, total                                | 7440-48-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00010     | mg/L             | < 0.00010            | <0.00010             | 8200               | 222  | -       |
| Copper, total                                | 7440-50-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.00050     | mg/L             | 0.00050              | 0.00748              | 8900               | 222  | -       |
| ron, total                                   | 7439-89-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.010       | mg/L             | 0.012                | <0.010               | \$ <u>200</u> \$   | 222  |         |
| Lead, total                                  | 7439-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.000050    | mg/L             | <0.000050            | 0.000137             | \$ <u>200</u> \$   | 222  | 1000    |
| Lithium, total                               | 7439-93-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.0010      | mg/L             | <0.0010              | <0.0010              | 8 <u>200</u> 8     | 222  |         |
| Magnesium, total                             | 7439-95-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E420/VA            | 0.0050      | mg/L             | 0.286                | 0.669                | 8 <u>200</u> 8     |      | 17.00   |
| Manganese, total                             | 7439-96-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 0.00010     | mg/L             | 0.00021              | 0.00046              | \$ <u>200</u> \$   |      | 17.00   |
| Mercury, total                               | 7439-97-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E508/VA            | 0.0000050   | mg/L             | <0.0000050           | <0.0000050           | 8200               | 222  | 17.000  |

 Page
 :
 4 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay

 Project
 :
 ---



Analytical Results

| Sub-Matrix: Surface Water       |                      | Client sample                | 110110                  | Magnesia Raw         | (45000s)            | 818700             | 3725               |
|---------------------------------|----------------------|------------------------------|-------------------------|----------------------|---------------------|--------------------|--------------------|
| Matrix: Water)                  |                      |                              | Water                   | Water                |                     |                    | 0                  |
|                                 |                      | Client sampling date / ti    | ne 17-Sep-2024<br>08:30 | 17-Sep-2024<br>09:55 | 2 <del>000</del> 0  | O <del>cc</del> es | =                  |
| Analyte                         | CAS Number Method/La | b LOR Unit                   | VA24C4440-017           | VA24C4440-018        | S-1000              |                    | 271772             |
|                                 |                      |                              | Result                  | Result               | CW6                 | -                  | 9334               |
| Total Metals                    |                      |                              |                         |                      |                     |                    |                    |
| Molybdenum, total               | 7439-98-7 E420/VA    | 0.000050 mg/L                | 0.000700                | 0.000236             | 6002                | 12525              | 8107               |
| Nickel, total                   | 7440-02-0 E420/VA    | 0.00050 mg/L                 | <0.00050                | <0.00050             | 87772               | 9555               | 2007               |
| Phosphorus, total               | 7723-14-0 E420/VA    | 0.050 mg/L                   | <0.050                  | <0.050               | 67772               | 1777               | 3,707              |
| Potassium, total                | 7440-09-7 E420/VA    | 0.050 mg/L                   | 0.127                   | 0.100                | 877728              | 9707               | 25                 |
| Rubidium, total                 | 7440-17-7 E420/VA    | 0.00020 mg/L                 | 0.00024                 | <0.00020             | 9 <del>7777</del> 2 | 5 <u>7578</u>      | 25                 |
| Selenium, total                 | 7782-49-2 E420/VA    | 0.000050 mg/L                | <0.000050               | 0.000071             | 97772               | 1707               | 5500               |
| Silicon, total                  | 7440-21-3 E420/VA    | 0.10 mg/L                    | 2.18                    | 4.98                 | 6 <del>7072</del> 8 | 1200               | 200                |
| Silver, total                   | 7440-22-4 E420/VA    | 0.000010 mg/L                | <0.000010               | <0.000010            | 0 <del>1000</del> 2 |                    | 2.2                |
| Sodium, total                   | 7440-23-5 E420/VA    | 0.050 mg/L                   | 0.917                   | 2.09                 | -                   |                    |                    |
| Strontium, total                | 7440-24-6 E420/VA    | 0.00020 mg/L                 | 0.00631                 | 0.0319               | 2 <del>5</del> 2    |                    |                    |
| Sulfur, total                   | 7704-34-9 E420/VA    | 0.50 mg/L                    | 0.54                    | 6.09                 |                     |                    |                    |
| Tellurium, total                | 13494-80-9 E420/VA   | 0.00020 mg/L                 | <0.00020                | <0.00020             | 9 <del>1</del> 0    |                    |                    |
| Thallium, total                 | 7440-28-0 E420/VA    | 0.000010 mg/L                | <0.000010               | <0.000010            | -                   |                    |                    |
| Thorium, total                  | 7440-29-1 E420/VA    | 0.00010 mg/L                 | <0.00010                | <0.00010             | 2 <del></del> 2     | 1777               |                    |
| Γin, total                      | 7440-31-5 E420/VA    | 0.00010 mg/L                 | <0.00010                | <0.00010             | -                   | 1777               |                    |
| Fitanium, total                 | 7440-32-6 E420/VA    | 0.00030 mg/L                 | <0.00030                | <0.00030             | 1 1                 | 1700               |                    |
| Fungsten, total                 | 7440-33-7 E420/VA    | 0.00010 mg/L                 | <0.00010                | <0.00010             |                     | 1.770              |                    |
| Jranium, total                  | 7440-61-1 E420/VA    | 0.000010 mg/L                | 0.000028                | <0.000010            | -                   | 1777               |                    |
| /anadium, total                 | 7440-62-2 E420/VA    | 0.00050 mg/L                 | <0.00050                | <0.00050             |                     | 1.777              |                    |
| line, total                     | 7440-66-6 E420/VA    | 0.0030 mg/L                  | <0.0030                 | 0.0049               | -                   |                    |                    |
| Zirconium, total                | 7440-67-7 E420/VA    | 0.00020 mg/L                 | <0.00020                | <0.00020             | 2 <del>111</del> 2  |                    | ic <del>an</del>   |
| Aggregate Organics              | No.                  | and the second of the second | In the same             |                      |                     |                    |                    |
| Biochemical oxygen demand [BOD] | E550/VA              | 2.0 mg/L                     | <2.0                    | <2.0                 | 200                 | 277                | Ka <del>taya</del> |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 5 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay

Project : ----



## Analytical Results

|                                         |                                                                                                                                                                                                                                        | GI                    | ent sample ID                              | Harvey Tank                             | Harvey Tank                                                                                              | Store / Cafe                | Store / Cafe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lions Bay Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                                                                                                        |                       |                                            | First Draw                              |                                                                                                          | First Draw                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | First Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         |                                                                                                                                                                                                                                        | Client samp           | ling date / time                           | 17-Sep-2024<br>08:20                    | 17-Sep-2024<br>08:20                                                                                     | 17-Sep-2024<br>10:30        | 17-Sep-2024<br>10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17-Sep-2024<br>06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CAS Number                              | Method/Lab                                                                                                                                                                                                                             | LOR                   | Unit                                       | VA24C4440-001                           | VA24C4440-002                                                                                            | VA24C4440-003               | VA24C4440-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VA24C4440-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                        |                       |                                            | Result                                  | Result                                                                                                   | Result                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                                                                                                                                                                                                                        |                       |                                            |                                         |                                                                                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | E290/VA                                                                                                                                                                                                                                | 11-25-201             | mg/L                                       | -                                       | 0.755                                                                                                    | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | EC100A/VA                                                                                                                                                                                                                              | 0.50                  | mg/L                                       | 6.88                                    | 6.88                                                                                                     | 8.34                        | 7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [                                       | E108/VA                                                                                                                                                                                                                                | 0.10                  | pH units                                   | -                                       | 7.13                                                                                                     | 100                         | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [                                       | E160/VA                                                                                                                                                                                                                                | 3.0                   | mg/L                                       | 1990                                    | <3.0                                                                                                     | 477                         | <3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | E121/VA                                                                                                                                                                                                                                | 0.10                  | NTU                                        | 100                                     | <0.10                                                                                                    | 4770                        | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                        |                       |                                            |                                         |                                                                                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | E355-L/VA                                                                                                                                                                                                                              | 0.50                  | mg/L                                       | (77)                                    | 0.67                                                                                                     | A 1970A                     | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                        |                       |                                            |                                         | 4                                                                                                        |                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7429-90-5                               | E420/VA                                                                                                                                                                                                                                | 0.0030                | mg/L                                       | 0.0224                                  | 0.0222                                                                                                   | 0.0266                      | 0.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7440-36-0                               | E420/VA                                                                                                                                                                                                                                | 0.00010               | mg/L                                       | < 0.00010                               | <0.00010                                                                                                 | <0.00010                    | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7440-38-2                               | E420/VA                                                                                                                                                                                                                                | 0.00010               | mg/L                                       | 0.00010                                 | 0.00011                                                                                                  | 0.00010                     | 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7440-39-3                               | E420/VA                                                                                                                                                                                                                                | 0.00010               | mg/L                                       | 0.00230                                 | 0.00221                                                                                                  | 0.00260                     | 0.00220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7440-41-7                               | E420/VA                                                                                                                                                                                                                                | 0.000020              | mg/L                                       | <0.000020                               | <0.000020                                                                                                | <0.000020                   | <0.000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7440-69-9                               | E420/VA                                                                                                                                                                                                                                | 0.000050              | mg/L                                       | <0.000050                               | < 0.000050                                                                                               | < 0.000050                  | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                        | 0.010                 | mg/L                                       | <0.010                                  | <0.010                                                                                                   | 0.018                       | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                        | 0.0000050             | mg/L                                       | <0.0000050                              | <0.0000050                                                                                               | 0.0000056                   | <0.0000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.0000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         |                                                                                                                                                                                                                                        | 0.050                 | mg/L                                       | 2.29                                    | 2.30                                                                                                     | 2.52                        | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00.0000000000000000000000000000000000 |                                                                                                                                                                                                                                        | 0.000010              | mg/L                                       | <0.000010                               | <0.000010                                                                                                | < 0.000010                  | <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7440-47-3                               | E420/VA                                                                                                                                                                                                                                | 0.00050               | 10.000                                     | < 0.00050                               | <0.00050                                                                                                 | < 0.00050                   | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$100,5 % Sept. 100.10                  |                                                                                                                                                                                                                                        | 0.00010               | 3,745                                      | < 0.00010                               | <0.00010                                                                                                 | 0.00022                     | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200000000000000000000000000000000000000 |                                                                                                                                                                                                                                        | 0.00050               | mg/L                                       | 0.00610                                 | 0.00538                                                                                                  | 0.0675                      | 0.00364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2003/04/04/04/04                        |                                                                                                                                                                                                                                        | 0.010                 | 3,335                                      | < 0.010                                 | <0.010                                                                                                   | 0.022                       | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2013111111111111111                     |                                                                                                                                                                                                                                        | 0.000050              | 3,745                                      | 64120000045                             | 0.000054                                                                                                 | 0.00290                     | 0.000297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100000000000000000000000000000000000000 |                                                                                                                                                                                                                                        | 0.0010                | 1000                                       | <0.0010                                 | <0.0010                                                                                                  | 0.0016                      | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                        | 0.0050                | 0.00                                       | 0.282                                   | 0.276                                                                                                    | 0.497                       | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                        | \$1000 March 0        | 7.00                                       | 20.00 Miles (1990)                      | 0.0000000000000000000000000000000000000                                                                  | 245575755                   | washii 61770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                        | 0.0000050             | 12.000                                     |                                         | <0.0000050                                                                                               |                             | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                        | **T002555555          | 12.00                                      | 080000000000                            | * 15054113-0-50035                                                                                       | 6.00.00 (C. 10.00)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                        | 1910 1910 1910        | 1000                                       |                                         | "YESTER AND THE                                                                                          |                             | 1915/1919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                        | 00.2865               | 12.00                                      | 2005.00                                 | 760000                                                                                                   | ************                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | 7429-90-5<br>7440-38-0<br>7440-38-2<br>7440-38-2<br>7440-41-7<br>7440-69-9<br>7440-42-8<br>7440-42-2<br>7440-47-2<br>7440-47-3<br>7440-48-4<br>7440-50-8<br>7439-89-6<br>7439-93-2<br>7439-95-4<br>7439-95-5<br>7439-97-6<br>7439-98-7 | CAS Number Method/Lab | Client sample  CAS Number  Method/Lab  LOR | Client sampling date / time  CAS Number | Client sampling date / time  17-Sep-2024 08:20  CAS Number  Method/Lab  LOR  Unit  VA24C4440-001  Result | Client sampling date / time | Client sampling date / time   17-Sep-2024   17-Sep-2024   08:20   17-Sep-2024   08:20   17-Sep-2024   08:20   17-Sep-2024   08:20   17-Sep-2024   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   10:30   1 | First Draw   Fir |

 Page
 :
 6 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay

 Project
 :
 --

ALS

#### Analytical Results

| Sub-Matrix: Water               |                       | Clie                        | ent sample ID | Harvey Tank   | Harvey Tank          | Store / Cafe         | Store / Cafe         | Lions Bay Ave.       |
|---------------------------------|-----------------------|-----------------------------|---------------|---------------|----------------------|----------------------|----------------------|----------------------|
| (Matrix: Water)                 |                       |                             |               | First Draw    |                      | First Draw           |                      | First Draw           |
|                                 |                       | Client sampling date / time |               |               | 17-Sep-2024<br>08:20 | 17-Sep-2024<br>10:30 | 17-Sep-2024<br>10:30 | 17-Sep-2024<br>06:50 |
| Analyte                         | CAS Number Method/Lab | LOR                         | Unit          | VA24C4440-001 | VA24C4440-002        | VA24C4440-003        | VA24C4440-004        | VA24C4440-005        |
|                                 |                       |                             |               | Result        | Result               | Result               | Result               | Result               |
| Total Metals                    |                       |                             |               |               |                      |                      |                      |                      |
| Potassium, total                | 7440-09-7 E420/VA     | 0.050                       | mg/L          | 0.135         | 0.133                | 0.136                | 0.133                | 0.163                |
| Rubidium, total                 | 7440-17-7 E420/VA     | 0.00020                     | mg/L          | 0.00032       | 0.00030              | 0.00035              | 0.00030              | 0.00041              |
| Selenium, total                 | 7782-49-2 E420/VA     | 0.000050                    | mg/L          | <0.000050     | <0.000050            | <0.000050            | <0.000050            | <0.000050            |
| Silicon, total                  | 7440-21-3 E420/VA     | 0.10                        | mg/L          | 2.16          | 2.17                 | 2.26                 | 2.23                 | 2.38                 |
| Silver, total                   | 7440-22-4 E420/VA     | 0.000010                    | mg/L          | <0.000010     | <0.000010            | <0.000010            | <0.000010            | <0.000010            |
| Sodium, total                   | 7440-23-5 E420/VA     | 0.050                       | mg/L          | 2.57          | 2.48                 | 2.52                 | 2.54                 | 2.54                 |
| Strontium, total                | 7440-24-8 E420/VA     | 0.00020                     | mg/L          | 0.00653       | 0.00633              | 0.00728              | 0.00630              | 0.00796              |
| Sulfur, total                   | 7704-34-9 E420/VA     | 0.50                        | mg/L          | 0.58          | 0.66                 | 0.59                 | 0.59                 | 0.72                 |
| Tellurium, total                | 13494-80-9 E420/VA    | 0.00020                     | mg/L          | < 0.00020     | <0.00020             | <0.00020             | <0.00020             | <0.00020             |
| Thallium, total                 | 7440-28-0 E420/VA     | 0.000010                    | mg/L          | <0.000010     | <0.000010            | <0.000010            | <0.000010            | <0.000010            |
| Thorium, total                  | 7440-29-1 E420/VA     | 0.00010                     | mg/L          | < 0.00010     | <0.00010             | <0.00010             | <0.00010             | <0.00010             |
| Tin, total                      | 7440-31-5 E420/VA     | 0.00010                     | mg/L          | < 0.00010     | <0.00010             | <0.00010             | <0.00010             | 0.00013              |
| Titanium, total                 | 7440-32-8 E420/VA     | 0.00030                     | mg/L          | < 0.00030     | <0.00030             | <0.00030             | <0.00030             | <0.00030             |
| Tungsten, total                 | 7440-33-7 E420/VA     | 0.00010                     | mg/L          | < 0.00010     | <0.00010             | <0.00010             | <0.00010             | <0.00010             |
| Uranium, total                  | 7440-61-1 E420/VA     | 0.000010                    | mg/L          | 0.000032      | 0.000031             | 0.000018             | 0.000030             | 0.000027             |
| Vanadium, total                 | 7440-62-2 E420/VA     | 0.00050                     | mg/L          | < 0.00050     | <0.00050             | < 0.00050            | <0.00050             | <0.00050             |
| Zinc, total                     | 7440-86-8 E420/VA     | 0.0030                      | mg/L          | < 0.0030      | < 0.0030             | 0.0450               | <0.0030              | < 0.0030             |
| Zirconium, total                | 7440-87-7 E420/VA     | 0.00020                     | mg/L          | <0.00020      | <0.00020             | <0.00020             | <0.00020             | <0.00020             |
| Aggregate Organics              |                       |                             |               |               |                      |                      | 7.                   | -                    |
| Biochemical oxygen demand [BOD] | E550/VA               | 2.0                         | mg/L          | -             | <2.0                 | -                    | <2.0                 |                      |
|                                 |                       |                             |               |               |                      |                      |                      |                      |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page 7 of 12 Work Order VA24C4440 Client Village of Lions Bay Project



#### Analytical Results Sub-Matrix: Water Client sample ID Lions Bay Ave. Kelvin Grove Kelvin Grove Community Community First Draw Centre Centre (Matrix: Water) First Draw Client sampling date / time 17-Sep-2024 17-Sep-2024 17-Sep-2024 17-Sep-2024 17-Sep-2024 06:50 05:25 05:25 06:15 06:15 VA24C4440-007 VA24C4440-006 VA24C4440-008 VA24C4440-010 Method/Lab LOR Unit VA24C4440-009 Analyte CAS Number Result Result Result Result Result **Physical Tests** --- E290/VA Alkalinity, total (as CaCO3) 1.0 mg/L 7.0 6.3 6.1 --- EC100A/VA Hardness (as CaCO3), from total Ca/Mg 7.75 8.10 7.15 0.50 mg/L 10.3 8.71 E108/VA 7.15 7.11 7.11 0.10 pH units E160/VA Solids, total suspended [TSS] 3.0 <3.0 <3.0 <3.0 mg/L \_\_\_ E121/VA Turbidity 0.10 NTU < 0.10 < 0.10 < 0.10 Organic / Inorganic Carbon Carbon, total organic [TOC] --- E355-L/VA 0.50 mg/L 0.79 0.76 0.73 **Total Metals** Aluminum, total 7429-90-5 E420/VA 0.0030 mg/L 0.0232 0.0440 0.0290 0.0140 0.0221 Antimony, total 7440-36-0 E420/VA 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 mg/L Arsenic, total 7440-38-2 E420/VA 0.00010 0.00011 0.00011 0.00013 < 0.00010 <0.00010 mg/L 7440-39-3 E420/VA 0.00010 0.00254 0.00268 0.00275 0.00242 0.00213 Barium, total mg/L 7440-41-7 E420/VA 0.000020 < 0.000020 < 0.000020 < 0.000020 < 0.000020 < 0.000020 Beryllium, total mg/L 7440-69-9 E420/VA 0.000050 0.000067 < 0.000050 < 0.000050 0.000923 < 0.000050 Bismuth, total mg/L Boron, total 7440-42-8 E420/VA 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 mg/L < 0.0000050 < 0.0000050 < 0.0000050 Cadmium, total 7440-43-9 E420/VA 0.0000050 mg/L < 0.0000050 0.0000068 Calcium, total 7440-70-2 E420/VA 0.050 mg/L 2.64 3.46 2.83 2.74 2.43 Cesium, total 7440-46-2 E420/VA 0.000010 <0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 mg/L Chromium, total 7440-47-3 E420/VA 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 mg/L 7440-48-4 E420/VA Cobalt, total 0.00010 mg/L < 0.00010 < 0.00010 < 0.00010 < 0.00010 <0.00010 Copper, total 7440-50-8 E420/VA 0.00050 0.00090 0.0223 0.00230 0.0869 0.0221 mg/L 0.010 0.011 0.033 0.076 < 0.010 0.016 Iron, total 7439-89-8 E420/VA mg/L 7439-92-1 E420/VA < 0.000050 0.00162 0.000281 0.000625 0.000197 Lead, total 0.000050 mg/L 7439-93-2 E420/VA 0.0010 < 0.0010 < 0.0010 <0.0010 < 0.0010 < 0.0010 Lithium, total mg/L Magnesium, total 7439-95-4 E420/VA 0.0050 mg/L 0.282 0.403 0.251 0.454 0.262 Manganese, total 7439-96-5 E420/VA 0.00010 0.00025 89000.0 0.00056 0.00124 0.00031 mg/L 7439-97-8 E508/VA Mercury, total 0.0000050 < 0.0000050 < 0.0000050 < 0.0000050 mg/L Molybdenum, total 7439-98-7 E420/VA 0.000050 0.000554 0.000664 0.000584 0.000568 0.000563 mg/L Nickel, total 7440-02-0 E420/VA 0.00050 < 0.00050 0.00157 < 0.00050 0.0310 < 0.00050 mg/L

 Page
 :
 8 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay



Project : ---

## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |                       | Clie           | nt sample ID   | Lions Bay Ave.       | Kelvin Grove<br>First Draw | Kelvin Grove         | Community<br>Centre<br>First Draw | Community<br>Centre  |
|--------------------------------------|-----------------------|----------------|----------------|----------------------|----------------------------|----------------------|-----------------------------------|----------------------|
|                                      |                       | Client samplin | ng date / time | 17-Sep-2024<br>06:50 | 17-Sep-2024<br>05:25       | 17-Sep-2024<br>05:25 | 17-Sep-2024<br>06:15              | 17-Sep-2024<br>06:15 |
| Analyte                              | CAS Number Method/Lab | LOR            | Unit           | VA24C4440-006        | VA24C4440-007              | VA24C4440-008        | VA24C4440-009                     | VA24C4440-010        |
|                                      | SAMONTA SINO          |                |                | Result               | Result                     | Result               | Result                            | Result               |
| Total Metals                         |                       |                |                |                      |                            |                      |                                   |                      |
| Phosphorus, total                    | 7723-14-0 E420/VA     | 0.050          | mg/L           | <0.050               | < 0.050                    | <0.050               | <0.050                            | <0.050               |
| Potassium, total                     | 7440-09-7 E420/VA     | 0.050          | mg/L           | 0.148                | 0.145                      | 0.139                | 0.150                             | 0.133                |
| Rubidium, total                      | 7440-17-7 E420/VA     | 0.00020        | mg/L           | 0.00031              | 0.00033                    | 0.00029              | 0.00035                           | 0.00030              |
| Selenium, total                      | 7782-49-2 E420/VA     | 0.000050       | mg/L           | <0.000050            | <0.000050                  | <0.000050            | <0.000050                         | <0.000050            |
| Silicon, total                       | 7440-21-3 E420/VA     | 0.10           | mg/L           | 2.28                 | 2.20                       | 2.25                 | 2.36                              | 2.26                 |
| Silver, total                        | 7440-22-4 E420/VA     | 0.000010       | mg/L           | <0.000010            | <0.000010                  | <0.000010            | <0.000010                         | <0.000010            |
| Sodium, total                        | 7440-23-5 E420/VA     | 0.050          | mg/L           | 2.45                 | 2.58                       | 2.46                 | 2.56                              | 2.56                 |
| Strontium, total                     | 7440-24-8 E420/VA     | 0.00020        | mg/L           | 0.00738              | 0.00763                    | 0.00706              | 0.00762                           | 0.00661              |
| Sulfur, total                        | 7704-34-9 E420/VA     | 0.50           | mg/L           | 0.63                 | 0.85                       | 0.70                 | 0.87                              | 0.65                 |
| Tellurium, total                     | 13494-80-9 E420/VA    | 0.00020        | mg/L           | <0.00020             | <0.00020                   | < 0.00020            | <0.00020                          | <0.00020             |
| Thallium, total                      | 7440-28-0 E420/VA     | 0.000010       | mg/L           | <0.000010            | <0.000010                  | <0.000010            | <0.000010                         | <0.000010            |
| Thorium, total                       | 7440-29-1 E420/VA     | 0.00010        | mg/L           | <0.00010             | <0.00010                   | <0.00010             | <0.00010                          | <0.00010             |
| Tin, total                           | 7440-31-5 E420/VA     | 0.00010        | mg/L           | <0.00010             | <0.00010                   | <0.00010             | 0.00032                           | <0.00010             |
| Titanium, total                      | 7440-32-8 E420/VA     | 0.00030        | mg/L           | <0.00030             | <0.00030                   | <0.00030             | <0.00030                          | <0.00030             |
| Tungsten, total                      | 7440-33-7 E420/VA     | 0.00010        | mg/L           | <0.00010             | <0.00010                   | <0.00010             | <0.00010                          | <0.00010             |
| Uranium, total                       | 7440-81-1 E420/VA     | 0.000010       | mg/L           | 0.000032             | 0.000020                   | 0.000032             | 0.000013                          | 0.000030             |
| Vanadium, total                      | 7440-62-2 E420/VA     | 0.00050        | mg/L           | <0.00050             | <0.00050                   | <0.00050             | <0.00050                          | <0.00050             |
| Zinc, total                          | 7440-66-6 E420/VA     | 0.0030         | mg/L           | <0.0030              | 0.0193                     | <0.0030              | 0.168                             | 0.0037               |
| Zirconium, total                     | 7440-67-7 E420/VA     | 0.00020        | mg/L           | <0.00020             | <0.00020                   | <0.00020             | <0.00020                          | <0.00020             |
| Aggregate Organics                   |                       |                |                |                      |                            | 112/2/01/2           | O ACCOMMOND                       | Di consequente.      |
| Biochemical oxygen demand [BOD]      | E550/VA               | 2.0            | mg/L           | <2.0                 | (122)                      | <2.0                 |                                   | <2.0                 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 9 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay

ALS

Project : ---

## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)  |             |                                          | Cli         | ient sample ID   | Magnesia Tank<br>First Draw | Magnesia Tank        | Brunswick<br>Beach<br>First Draw | Brunswick<br>Beach   | Lions Bay<br>Beach Park<br>First Draw |
|---------------------------------------|-------------|------------------------------------------|-------------|------------------|-----------------------------|----------------------|----------------------------------|----------------------|---------------------------------------|
|                                       |             |                                          | Client samp | ling date / time | 17-Sep-2024<br>09:45        | 17-Sep-2024<br>09:45 | 17-Sep-2024<br>10:50             | 17-Sep-2024<br>10:50 | 17-Sep-2024<br>11:10                  |
| Analyte                               | CAS Number  | Method/Lab                               | LOR         | Unit             | VA24C4440-011               | VA24C4440-012        | VA24C4440-013                    | VA24C4440-014        | VA24C4440-015                         |
|                                       |             |                                          |             |                  | Result                      | Result               | Result                           | Result               | Result                                |
| Physical Tests                        |             |                                          |             |                  |                             |                      |                                  |                      |                                       |
| Alkalinity, total (as CaCO3)          | -           | E290/VA                                  | 1.0         | mg/L             |                             | 5.4                  | ( <del>144</del> )               | 5.8                  |                                       |
| Hardness (as CaCO3), from total Ca/Mg | 200         | EC100A/VA                                | 0.50        | mg/L             | 18.8                        | 18.7                 | 19.5                             | 18.9                 | 7.53                                  |
| pH                                    | <u> 122</u> | E108/VA                                  | 0.10        | pH units         |                             | 7.04                 | ( <del>1111</del> )              | 7.09                 |                                       |
| Solids, total suspended [TSS]         | <u> 122</u> | E160/VA                                  | 3.0         | mg/L             |                             | <3.0                 | ( <del>1110</del> )              | <3.0                 | · ·                                   |
| Turbidity                             | <u> </u>    | E121/VA                                  | 0.10        | NTU              | -                           | <0.10                | (1944)                           | <0.10                |                                       |
| Organic / Inorganic Carbon            |             |                                          |             |                  |                             |                      |                                  |                      |                                       |
| Carbon, total organic [TOC]           | 122         | E355-L/VA                                | 0.50        | mg/L             |                             | <0.50                | 3 <del>44</del> 8                | 0.56                 | 7.00                                  |
| Total Metals                          |             | w.                                       |             |                  |                             |                      |                                  |                      |                                       |
| Aluminum, total                       | 7429-90-5   | E420/VA                                  | 0.0030      | mg/L             | 0.0134                      | 0.0166               | 0.0169                           | 0.0161               | 0.0174                                |
| Antimony, total                       | 7440-36-0   | E420/VA                                  | 0.00010     | mg/L             | < 0.00010                   | <0.00010             | < 0.00010                        | <0.00010             | <0.00010                              |
| Arsenic, total                        | 7440-38-2   | E420/VA                                  | 0.00010     | mg/L             | 0.00014                     | 0.00014              | 0.00012                          | 0.00011              | 0.00010                               |
| Barium, total                         | 7440-39-3   |                                          | 0.00010     | mg/L             | 0.00288                     | 0.00298              | 0.00334                          | 0.00331              | 0.00266                               |
| Beryllium, total                      | 7440-41-7   |                                          | 0.000020    | mg/L             | <0.000020                   | <0.000020            | <0.000020                        | <0.000020            | <0.000020                             |
| Bismuth, total                        | 7440-69-9   |                                          | 0.000050    | mg/L             | <0.000050                   | <0.000050            | 0.000536                         | <0.000050            | 0.000427                              |
| Boron, total                          | 7440-42-8   |                                          | 0.010       | mg/L             | 0.012                       | 0.012                | 0.012                            | 0.012                | < 0.010                               |
| Cadmium, total                        | 7440-43-9   | -00 00V:00000V                           | 0.0000050   | mg/L             | 0.0000466                   | 0.0000193            | 0.0000181                        | 0.0000174            | <0.0000050                            |
| Calcium, total                        | 7440-70-2   | 25 SON SON                               | 0.050       | mg/L             | 6.49                        | 6.43                 | 6.75                             | 6.57                 | 2.54                                  |
| Cesium, total                         | 7440-46-2   | 1 18 18 0 1 A 18 A 18 C                  | 0.000010    | mg/L             | <0.000010                   | <0.000010            | 0.000011                         | 0.000010             | <0.000010                             |
| Chromium, total                       | 7440-47-3   | -10 Oct 0 1/000V                         | 0.00050     | mg/L             | < 0.00050                   | <0.00050             | <0.00050                         | <0.00050             | <0.00050                              |
| Cobalt, total                         | 7440-48-4   | 1.00 (00 (00 (00 (00 (00 (00 (00 (00 (00 | 0.00010     | mg/L             | <0.00010                    | <0.00010             | < 0.00010                        | <0.00010             | <0.00010                              |
| Copper, total                         | 7440-50-8   | A 300 CO CO CO                           | 0.00050     | mg/L             | 0.308                       | 0.00517              | 0.0233                           | 0.00114              | 0.0879                                |
| Iron, total                           | 7439-89-6   | 1 TA (600 A 6 A 600)                     | 0.010       | mg/L             | 0.067                       | <0.010               | 0.016                            | 0.017                | 0.023                                 |
| Lead, total                           | 7439-92-1   |                                          | 0.000050    | mg/L             | 0.00186                     | <0.000050            | 0.000172                         | <0.000050            | 0.000681                              |
| Lithium, total                        | 7439-93-2   |                                          | 0.0010      | mg/L             | <0.0010                     | <0.0010              | <0.0010                          | <0.0010              | <0.0010                               |
| Magnesium, total                      | 7439-95-4   | -01 (000 U.S.C.)                         | 0.0050      | mg/L             | 0.635                       | 0.637                | 0.637                            | 0.614                | 0.289                                 |
| Manganese, total                      | 7439-96-5   |                                          | 0.00010     | mg/L             | 0.00067                     | 0.00042              | 0.00110                          | 0.00032              | 0.00078                               |
| Mercury, total                        | 7439-97-6   |                                          | 0.0000050   | mg/L             | 4.00                        | <0.0000050           | 787                              | <0.0000050           |                                       |
| Molybdenum, total                     | 7439-98-7   | - CONT. 1000 CO.                         | 0.000050    | mg/L             | 0.000235                    | 0.000258             | 0.000249                         | 0.000233             | 0.000502                              |
| Nickel, total                         | 7440-02-0   |                                          | 0.00050     | mg/L             | 0.00530                     | <0.00050             | 0.00063                          | <0.00050             | 0.00275                               |

 Page
 :
 10 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay

 Project
 :
 --



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clie          | ent sample ID   | Magnesia Tank<br>First Draw | Magnesia Tank        | Brunswick<br>Beach<br>First Draw | Brunswick<br>Beach   | Lions Bay<br>Beach Park<br>First Draw |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-----------------------------|----------------------|----------------------------------|----------------------|---------------------------------------|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client sampli | ing date / time | 17-Sep-2024<br>09:45        | 17-Sep-2024<br>09:45 | 17-Sep-2024<br>10:50             | 17-Sep-2024<br>10:50 | 17-Sep-2024<br>11:10                  |
| Analyte                              | CAS Number Method/Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOR           | Unit            | VA24C4440-011               | VA24C4440-012        | VA24C4440-013                    | VA24C4440-014        | VA24C4440-015                         |
|                                      | Charles Charles 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 | Result                      | Result               | Result                           | Result               | Result                                |
| Total Metals                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |                             |                      |                                  |                      |                                       |
| Phosphorus, total                    | 7723-14-0 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050         | mg/L            | <0.050                      | <0.050               | <0.050                           | <0.050               | <0.050                                |
| Potassium, total                     | 7440-09-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050         | mg/L            | 0.103                       | 0.106                | 0.112                            | 0.113                | 0.144                                 |
| Rubidium, total                      | 7440-17-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020       | mg/L            | < 0.00020                   | <0.00020             | 0.00020                          | <0.00020             | 0.00032                               |
| Selenium, total                      | 7782-49-2 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000050      | mg/L            | 0.000096                    | 0.000087             | 0.000084                         | 0.000081             | <0.000050                             |
| Silicon, total                       | 7440-21-3 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10          | mg/L            | 4.92                        | 5.04                 | 5.09                             | 5.10                 | 2.23                                  |
| Silver, total                        | 7440-22-4 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010      | mg/L            | 0.000028                    | <0.000010            | <0.000010                        | <0.000010            | <0.000010                             |
| Sodium, total                        | 7440-23-5 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050         | mg/L            | 3.56                        | 3.74                 | 3.70                             | 3.57                 | 2.56                                  |
| Strontium, total                     | 7440-24-8 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020       | mg/L            | 0.0315                      | 0.0308               | 0.0318                           | 0.0310               | 0.00707                               |
| Sulfur, total                        | 7704-34-9 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50          | mg/L            | 5.41                        | 5.56                 | 5.66                             | 5.47                 | 0.61                                  |
| Tellurium, total                     | 13494-80-9 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020       | mg/L            | < 0.00020                   | <0.00020             | < 0.00020                        | <0.00020             | <0.00020                              |
| Thallium, total                      | 7440-28-0 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010      | mg/L            | <0.000010                   | <0.000010            | <0.000010                        | <0.000010            | <0.000010                             |
| Thorium, total                       | 7440-29-1 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010       | mg/L            | < 0.00010                   | <0.00010             | < 0.00010                        | <0.00010             | <0.00010                              |
| Tin, total                           | 7440-31-5 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010       | mg/L            | < 0.00010                   | <0.00010             | < 0.00010                        | <0.00010             | <0.00010                              |
| Titanium, total                      | 7440-32-8 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00030       | mg/L            | < 0.00030                   | <0.00030             | <0.00030                         | <0.00030             | <0.00030                              |
| Tungsten, total                      | 7440-33-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010       | mg/L            | < 0.00010                   | <0.00010             | < 0.00010                        | <0.00010             | <0.00010                              |
| Uranium, total                       | 7440-61-1 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010      | mg/L            | <0.000010                   | <0.000010            | <0.000010                        | <0.000010            | 0.000020                              |
| Vanadium, total                      | 7440-62-2 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00050       | mg/L            | < 0.00050                   | <0.00050             | < 0.00050                        | <0.00050             | <0.00050                              |
| Zinc, total                          | 7440-66-6 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0030        | mg/L            | 0.126                       | <0.0030              | 0.0084                           | <0.0030              | 0.165                                 |
| Zirconium, total                     | 7440-67-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020       | mg/L            | <0.00020                    | <0.00020             | <0.00020                         | <0.00020             | <0.00020                              |
| Aggregate Organics                   | The state of the s |               |                 |                             |                      |                                  | 0                    | Control Control                       |
| Biochemical oxygen demand [BOD]      | E550/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0           | mg/L            | 1000                        | <2.0                 | 5 <u>244</u> 6                   | <2.0                 |                                       |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 11 of 12

 Work Order
 :
 VA24C4440

 Client
 :
 Village of Lions Bay



Project : ----

## Analytical Results

| Sub-Matrix: Water                     |            |                                         | CI          | ient sample ID   | Lions Bay            |                 |                     |                      |       |
|---------------------------------------|------------|-----------------------------------------|-------------|------------------|----------------------|-----------------|---------------------|----------------------|-------|
|                                       |            |                                         |             | em sample ib     | Beach Park           | 777             | M7770               | 11.5770              | 1975  |
| (Matrix: Water)                       |            |                                         |             |                  | Deadillark           |                 |                     | 54<br>65             |       |
|                                       |            |                                         | Client samp | ling date / time | 17-Sep-2024<br>11:10 |                 |                     | -                    | -     |
| Analyte                               | CAS Number | Method/Lab                              | LOR         | Unit             | VA24C4440-016        |                 |                     | <del>second</del> s. |       |
|                                       |            |                                         |             |                  | Result               | 575             | 1577-2              | 197.5                | (77)  |
| Physical Tests                        |            |                                         |             |                  |                      |                 |                     |                      |       |
| Alkalinity, total (as CaCO3)          | 500        | E290/VA                                 | 1.0         | mg/L             | 6.2                  | 3-2013          | 4 <del>151</del> 44 | 977                  | 1000  |
| Hardness (as CaCO3), from total Ca/Mg | -          | EC100A/VA                               | 0.50        | mg/L             | 7.22                 | 343751          | 477                 | 1000                 | 9.00  |
| pH                                    | _          | E108/VA                                 | 0.10        | pH units         | 7.12                 |                 |                     |                      |       |
| Solids, total suspended [TSS]         | _          | E160/VA                                 | 3.0         | mg/L             | <3.0                 |                 |                     |                      |       |
| Turbidity                             | -          | E121/VA                                 | 0.10        | NTU              | <0.10                | , <del></del> - |                     |                      |       |
| Organic / Inorganic Carbon            |            |                                         | 200         |                  |                      |                 |                     |                      |       |
| Carbon, total organic [TOC]           |            | E355-L/VA                               | 0.50        | mg/L             | 0.69                 | 34.77           |                     |                      |       |
| Total Metals                          |            |                                         | **          |                  |                      |                 |                     | 8                    |       |
| Aluminum, total                       | 7429-90-5  | E420/VA                                 | 0.0030      | mg/L             | 0.0240               | - 1             | -                   |                      |       |
| Antimony, total                       | 7440-36-0  | E420/VA                                 | 0.00010     | mg/L             | <0.00010             |                 |                     |                      |       |
| Arsenic, total                        | 7440-38-2  | E420/VA                                 | 0.00010     | mg/L             | 0.00012              |                 | -                   |                      | 0.777 |
| Barium, total                         | 7440-39-3  | E420/VA                                 | 0.00010     | mg/L             | 0.00231              |                 | _                   |                      | 0.777 |
| Beryllium, total                      | 7440-41-7  | E420/VA                                 | 0.000020    | mg/L             | <0.000020            |                 | -                   |                      |       |
| Bismuth, total                        | 7440-69-9  | E420/VA                                 | 0.000050    | mg/L             | 0.000062             |                 |                     |                      |       |
| Boron, total                          | 7440-42-8  |                                         | 0.010       | mg/L             | <0.010               |                 |                     |                      |       |
| Cadmium, total                        | 7440-43-9  |                                         | 0.0000050   | mg/L             | <0.0000050           |                 |                     |                      |       |
| Calcium, total                        | 7440-70-2  |                                         | 0.050       | mg/L             | 2.44                 |                 |                     |                      |       |
| Cesium, total                         | 7440-46-2  | 13.54 19636                             | 0.000010    | mg/L             | <0.000010            |                 | _                   |                      |       |
| Chromium, total                       | 7440-47-3  | 10410000                                | 0.00050     | mg/L             | <0.00050             | _               | _                   |                      |       |
| Cobalt, total                         | 7440-48-4  | 1.74.07(0)(0)                           | 0.00010     | mg/L             | <0.00010             |                 | _                   |                      |       |
| Copper, total                         | 7440-50-8  | - 342004100                             | 0.00050     | mg/L             | 0.0174               |                 |                     |                      |       |
| Iron, total                           | 7439-89-6  | 17407000                                | 0.010       | mg/L             | 0.028                |                 | _                   |                      |       |
| Lead, total                           | 7439-92-1  | 1.0000000000000000000000000000000000000 | 0.000050    | mg/L             | 0.000409             |                 | _                   |                      | 10    |
| Lithium, total                        | 7439-93-2  | 1 - C 2 7 Y - C 1 1 1 1 1 Y             | 0.0010      | mg/L             | <0.0010              | 1               | _                   |                      |       |
| Magnesium, total                      | 7439-95-4  |                                         | 0.0050      | mg/L             | 0.274                |                 | 2                   |                      | 10    |
| Manganese, total                      | 7439-96-5  |                                         | 0.00010     | mg/L             | 0.00037              | 1               |                     |                      | 0     |
| Mercury, total                        | 7439-97-6  |                                         | 0.0000050   | mg/L             | <0.0000050           |                 |                     |                      | 10    |
| Molybdenum, total                     | 7439-98-7  |                                         | 0.000050    | mg/L             | 0.000570             |                 |                     |                      | 10    |
| Nickel, total                         | 7440-02-0  | 10.00.000000                            | 0.00050     | mg/L             | <0.00050             | 2               | 1                   |                      |       |
| Phosphorus, total                     | 7723-14-0  |                                         | 0.050       | 7.00             | <0.050               |                 | , <del></del>       |                      |       |
| r nosphorus, total                    | 1123-14-0  | L-12U/VA                                | 0.000       | mg/L             | NU.000               | -               | 3                   |                      | 0     |

Page 12 of 12 Work Order VA24C4440 Village of Lions Bay

Client Project



#### **Analytical Results**

| Sub-Matrix: Water<br>(Matrix: Water) |                       | Cli         | ient sample ID   | Lions Bay<br>Beach Park | <del>7772</del> | M <del>TWE</del> LS | TERME               | 1855    |
|--------------------------------------|-----------------------|-------------|------------------|-------------------------|-----------------|---------------------|---------------------|---------|
|                                      |                       | Client samp | ling date / time | 17-Sep-2024<br>11:10    |                 | 3                   |                     | -       |
| Analyte                              | CAS Number Method/Lab | LOR         | Unit             | VA24C4440-016           |                 |                     | <del>100000</del> 4 | 1777777 |
|                                      |                       |             |                  | Result                  |                 | 10770               | 757.6               | (575)   |
| Total Metals                         |                       |             |                  |                         |                 |                     |                     |         |
| Potassium, total                     | 7440-09-7 E420/VA     | 0.050       | mg/L             | 0.135                   | 3.00            |                     |                     |         |
| Rubidium, total                      | 7440-17-7 E420/VA     | 0.00020     | mg/L             | 0.00028                 | 3,555           | A 1010              |                     |         |
| Selenium, total                      | 7782-49-2 E420/VA     | 0.000050    | mg/L             | <0.000050               | 1,000           | - T-                |                     |         |
| Silicon, total                       | 7440-21-3 E420/VA     | 0.10        | mg/L             | 2.26                    |                 | A 1010              |                     |         |
| Silver, total                        | 7440-22-4 E420/VA     | 0.000010    | mg/L             | <0.000010               | 1,277           |                     |                     |         |
| Sodium, total                        | 7440-23-5 E420/VA     | 0.050       | mg/L             | 2.52                    |                 | 2 <del>737</del> 24 |                     |         |
| Strontium, total                     | 7440-24-8 E420/VA     | 0.00020     | mg/L             | 0.00666                 | 1,277           |                     |                     |         |
| Sulfur, total                        | 7704-34-9 E420/VA     | 0.50        | mg/L             | 0.60                    |                 | 2 <del>757</del> 24 |                     |         |
| Tellurium, total                     | 13494-80-9 E420/VA    | 0.00020     | mg/L             | <0.00020                |                 |                     |                     |         |
| Thallium, total                      | 7440-28-0 E420/VA     | 0.000010    | mg/L             | <0.000010               |                 | _                   |                     |         |
| Thorium, total                       | 7440-29-1 E420/VA     | 0.00010     | mg/L             | <0.00010                | ( <del></del>   |                     |                     | 0       |
| Tin, total                           | 7440-31-5 E420/VA     | 0.00010     | mg/L             | <0.00010                | -               |                     |                     | 0.      |
| Titanium, total                      | 7440-32-8 E420/VA     | 0.00030     | mg/L             | <0.00030                | ( <del></del> - | _                   |                     |         |
| Tungsten, total                      | 7440-33-7 E420/VA     | 0.00010     | mg/L             | <0.00010                | -               | _                   |                     | 0       |
| Uranium, total                       | 7440-61-1 E420/VA     | 0.000010    | mg/L             | 0.000031                |                 | -                   |                     | 0.000   |
| Vanadium, total                      | 7440-62-2 E420/VA     | 0.00050     | mg/L             | <0.00050                | -               | _                   |                     | 0       |
| Zinc, total                          | 7440-86-8 E420/VA     | 0.0030      | mg/L             | <0.0030                 |                 |                     |                     |         |
| Zirconium, total                     | 7440-67-7 E420/VA     | 0.00020     | mg/L             | <0.00020                | -               | 1.77                |                     |         |
| Aggregate Organics                   |                       |             |                  |                         |                 |                     |                     |         |
| Biochemical oxygen demand [BOD]      | E550/VA               | 2.0         | mg/L             | <2.0                    | 1 <del></del> - | -                   |                     |         |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

## APPENDIX 6: METALS AND CHEMISTRY, ALBERTA CREEK RAW, APR.-DEC.

Page : 3 of 4 Work Order : VA24A8827

Client : Village of Lions Bay
Project : ----



#### Analytical Results Sub-Matrix: Surface Water Client sample ID Alberta Creek (Matrix: Water) Client sampling date / time 24-Apr-2024 11:30 CAS Number Method/Lab LOR VA24A8827-001 Analyte Result **Physical Tests** \_\_\_ E100/VA 2.0 43.4 Conductivity µS/cm E162/VA 43 10 Solids, total dissolved [TDS] mg/L Solids, total suspended [TSS] E160/VA 3.0 <3.0 mg/L Organic / Inorganic Carbon Carbon, total organic [TOC] --- E355-L/VA 0.50 < 0.50 mg/L **Total Metals** 7429-90-5 E420/VA Aluminum, total 0.0030 0.0536 mg/L 7440-36-0 E420/VA 0.00010 < 0.00010 Antimony, total mg/L 7440-38-2 E420/VA 0.00010 < 0.00010 Arsenic, total mg/L Barium, total 7440-39-3 E420/VA 0.00010 0.00365 mg/L 7440-41-7 E420/VA 0.000020 < 0.000020 Beryllium, total mg/L Bismuth, total 7440-69-9 E420/VA 0.000050 < 0.000050 mg/L 7440-42-8 E420/VA 0.010 Boron, total mg/L 0.012 0.0000206 Cadmium, total 7440-43-9 E420/VA 0.0000050 mg/L Calcium, total 7440-70-2 E420/VA 0.050 mg/L 4.92 Cesium, total 7440-46-2 E420/VA 0.000010 < 0.000010 mg/L Chromium, total 7440-47-3 E420/VA 0.00050 < 0.00050 mg/L 7440-48-4 E420/VA Cobalt, total 0.00010 0.00014 mg/L 7440-50-8 E420/VA 0.00050 0.00092 Copper, total mg/L 7439-89-6 E420/VA 0.010 0.016 Iron, total mg/L 7439-92-1 E420/VA Lead, total 0.000050 mg/L < 0.000050 Lithium, total 7439-93-2 E420/VA 0.0010 < 0.0010 mg/L Magnesium, total 7439-95-4 E420/VA 0.0050 0.695 mg/L Manganese, total 7439-98-5 E420/VA 0.00010 0.00227 mg/L 7439-97-6 E508/VA mg/L 0.0000050 < 0.0000050 Mercury, total 7439-98-7 E420/VA Molybdenum, total 0.000050 0.000300 mg/L Nickel, total 7440-02-0 E420/VA 0.00050 < 0.00050 mg/L 7723-14-0 E420/VA Phosphorus, total 0.050 < 0.050 mg/L 7440-09-7 E420/VA Potassium, total 0.050 0.102 mg/L

ALS

 Page
 :
 4 of 4

 Work Order
 :
 VA24A8827

 Client
 :
 Village of Lions Bay

Project : ---

#### Analytical Results

| Sub-Matrix: Surface Water |                       | Clie          | ent sample ID          | Alberta Creek        |                     | (Action)             |                    |                      |
|---------------------------|-----------------------|---------------|------------------------|----------------------|---------------------|----------------------|--------------------|----------------------|
| (Matrix: Water)           |                       | 0000          | CANCESCON CANALITY CO. | 4                    |                     | 95.000.000           | CHARGO.            | 51000                |
|                           |                       | Client sampli | ing date / time        | 24-Apr-2024<br>11:30 | -                   | ( <del></del> )      |                    | <del>200</del>       |
| Analyte                   | CAS Number Method/Lab | LOR           | Unit                   | VA24A8827-001        | Carrette I          |                      | -                  | 277772               |
|                           |                       |               |                        | Result               | E-                  | Care.                | - <del>13</del> 18 | 977.6                |
| Total Metals              |                       |               |                        |                      |                     |                      |                    |                      |
| Rubidium, total           | 7440-17-7 E420/VA     | 0.00020       | mg/L                   | <0.00020             | 1157750             | 67.722               | 1000               | 1 31 <del>07</del> 3 |
| Selenium, total           | 7782-49-2 E420/VA     | 0.000050      | mg/L                   | 0.000110             | 1157750             | 877728               | 1207               | 3,7073               |
| Silicon, total            | 7440-21-3 E420/VA     | 0.10          | mg/L                   | 6.22                 | 1057750             | 6 <del>77.72</del> 8 | 1207               | 55 <del>775</del>    |
| Silver, total             | 7440-22-4 E420/VA     | 0.000010      | mg/L                   | <0.000010            | 1057750             | 9 <del>7579</del> 8  | 1707               | 55 <del>775</del>    |
| Sodium, total             | 7440-23-5 E420/VA     | 0.050         | mg/L                   | 1.84                 | 10-777-0            | 97772                | 1777               | 3,555                |
| Strontium, total          | 7440-24-6 E420/VA     | 0.00020       | mg/L                   | 0.0174               | 10-777-0            | 97772                | 1777               | 3,555                |
| Sulfur, total             | 7704-34-9 E420/VA     | 0.50          | mg/L                   | 2.37                 | 10-777-0            | 97772                |                    | 3,555                |
| Tellurium, total          | 13494-80-9 E420/VA    | 0.00020       | mg/L                   | <0.00020             | 1157750             | 9 <del>7579</del> 23 |                    | 35 <del>77</del> 2   |
| Thallium, total           | 7440-28-0 E420/VA     | 0.000010      | mg/L                   | <0.000010            | 8500                | 2 <del></del> 2      |                    | S                    |
| Thorium, total            | 7440-29-1 E420/VA     | 0.00010       | mg/L                   | <0.00010             | 8 <del>7.00</del> 0 |                      |                    |                      |
| Tin, total                | 7440-31-5 E420/VA     | 0.00010       | mg/L                   | <0.00010             | 8 <del>7.00</del> 0 |                      |                    |                      |
| Titanium, total           | 7440-32-6 E420/VA     | 0.00030       | mg/L                   | <0.00030             |                     |                      |                    |                      |
| Tungsten, total           | 7440-33-7 E420/VA     | 0.00010       | mg/L                   | <0.00010             | 8 <del>7.00</del> 0 | 2 <del></del> 2      |                    | S                    |
| Uranium, total            | 7440-61-1 E420/VA     | 0.000010      | mg/L                   | <0.000010            | S1-11-11            |                      |                    |                      |
| Vanadium, total           | 7440-62-2 E420/VA     | 0.00050       | mg/L                   | <0.00050             | 8                   |                      |                    |                      |
| Zinc, total               | 7440-66-6 E420/VA     | 0.0030        | mg/L                   | <0.0030              | 8                   |                      |                    |                      |
| Zirconium, total          | 7440-67-7 E420/VA     | 0.00020       | mg/L                   | <0.00020             |                     | 8                    |                    |                      |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 3 of 4

 Work Order
 :
 VA24B1660

 Client
 :
 Village of Lions Bay

 Project
 :
 --



#### Analytical Results

| Sub-Matrix: Surface Water                              |              |            | Cli          | ent sample ID    | Alberta Creek        |                        | 5 <del>500</del> 3  | -        |         |
|--------------------------------------------------------|--------------|------------|--------------|------------------|----------------------|------------------------|---------------------|----------|---------|
| (Matrix: Water)                                        |              |            |              |                  |                      |                        |                     |          |         |
|                                                        |              |            | Client sampi | ling date / time | 23-May-2024<br>11:30 |                        | _                   | _        | 212     |
| Analyte                                                | CAS Number   | Method/Lab | LOR          | Unit             | VA24B1660-001        |                        | ( <del></del>       | <u> </u> |         |
| Physical Tests                                         | V.           |            |              |                  | Result               |                        |                     |          |         |
| Conductivity                                           | E1           | nn/vA      | 2.0          | μS/cm            | 36.7                 | -                      |                     |          |         |
| Solids, total dissolved [TDS]                          |              | 62/VA      | 10           | mg/L             | 36                   | 1000000                | 2000                |          |         |
| Solids, total suspended [TSS]                          |              | 60/VA      | 3.0          | mg/L             | <3.0                 | 345553                 | 1900000             | 200      | 0.000   |
|                                                        | [-1          | OUVA       | 3.0          | mg/L             | ~5.U                 |                        |                     |          |         |
| Organic / Inorganic Carbon Carbon, total organic [TOC] | E2           | 55-L/CG    | 0.50         | mg/L             | 0.75                 | 1                      | 1                   | 1000     | -       |
|                                                        | E3           | 55-DCG     | 0.50         | mg/L             | 0.75                 |                        |                     |          |         |
| Total Metals<br>Aluminum, total                        | 7429-90-5 E4 | 20/1/4     | 0.0030       |                  | 0.0673               |                        | takes 1             |          |         |
| •                                                      | 7440-36-0 E4 |            | 0.0000       | mg/L             | <0.0073              | 200000                 | 1, <del>000</del> 0 |          |         |
| Antimony, total                                        |              |            | 0.00010      | mg/L             | <0.00010             | 50 <del>000</del> 5    | 1, <del>000</del> 0 |          | 0.00000 |
| Arsenic, total                                         | 7440-38-2 E4 |            |              | mg/L             | 0.00304              | (1) <del>(1) (1)</del> | 5 <del>555</del> 0  |          | 5,00000 |
| Barium, total                                          | 7440-39-3 E4 |            | 0.00010      | mg/L             |                      | (0.000)                | 5-1-0               |          |         |
| Beryllium, total                                       | 7440-41-7 E4 |            | 0.000020     | mg/L             | <0.000020            | S                      | S                   |          |         |
| Bismuth, total                                         | 7440-69-9 E4 |            | 0.000050     | mg/L             | <0.000050            | S                      | S-22-S              |          |         |
| Boron, total                                           | 7440-42-8 E4 |            | 0.010        | mg/L             | 0.011                | S                      | S-22-S              |          |         |
| Cadmium, total                                         | 7440-43-9 E4 |            | 0.0000050    | mg/L             | 0.0000182            | -                      |                     |          | 1000    |
| Calcium, total                                         | 7440-70-2 E4 |            | 0.050        | mg/L             | 4.48                 | -                      |                     |          | 1000    |
| Cesium, total                                          | 7440-46-2 E4 |            | 0.000010     | mg/L             | 0.000010             | -                      |                     |          | 10      |
| Chromium, total                                        | 7440-47-3 E4 |            | 0.00050      | mg/L             | <0.00050             | -                      |                     |          |         |
| Cobalt, total                                          | 7440-48-4 E4 |            | 0.00010      | mg/L             | 0.00022              | -                      | 344                 |          | 10      |
| Copper, total                                          | 7440-50-8 E4 |            | 0.00050      | mg/L             | 0.00093              |                        | 8 <u>444</u> 8      |          |         |
| Iron, total                                            | 7439-89-8 E4 |            | 0.010        | mg/L             | 0.026                | S                      | 8 <u>444</u> 8      |          | (C-2)   |
| Lead, total                                            | 7439-92-1 E4 | 20/VA      | 0.000050     | mg/L             | <0.000050            | 8 <del></del>          | 8 <u>444</u> 8      | 1222     |         |
| Lithium, total                                         | 7439-93-2 E4 | 20/VA      | 0.0010       | mg/L             | <0.0010              | 822                    | 3 <u>244</u> 3      | 1222     |         |
| Magnesium, total                                       | 7439-95-4 E4 | 20/VA      | 0.0050       | mg/L             | 0.607                | (S <u>CA</u> E)        | 3 <u>222</u> 3      |          |         |
| Manganese, total                                       | 7439-98-5 E4 | 20/VA      | 0.00010      | mg/L             | 0.00370              | <u> </u>               | 1 <u></u> 1         |          |         |
| Mercury, total                                         | 7439-97-6 E5 | 08/VA      | 0.0000050    | mg/L             | <0.0000050           | 83 <u>242</u> 7        | 5 <u>244</u> 8      |          |         |
| Molybdenum, total                                      | 7439-98-7 E4 | 20/VA      | 0.000050     | mg/L             | 0.000291             | 83 <u>242</u> 8        | 1 <u>244</u> .5     |          | 0.000   |
| Nickel, total                                          | 7440-02-0 E4 | 20/VA      | 0.00050      | mg/L             | <0.00050             | 832420                 | 5 <u>244</u> 8      |          | (2000)  |
| Phosphorus, total                                      | 7723-14-0 E4 | 20/VA      | 0.050        | mg/L             | <0.050               | 852428                 | 5 <u>244</u> 8      | 200      |         |
| Potassium, total                                       | 7440-09-7 E4 | 20/VA      | 0.050        | mg/L             | 0.110                | (32.00)                | 5 <u>244</u> 8      | 1200     |         |

 Page
 :
 4 of 4

 Work Order
 :
 VA24B1660

 Client
 :
 Village of Lions Bay

 Project
 :
 --



#### Analytical Results

| Sub-Matrix: Surface Water |                       | Clie          | ent sample ID   | Alberta Creek        | 950              | (2 <del>1271</del> 2) | 200000    | 570%  |
|---------------------------|-----------------------|---------------|-----------------|----------------------|------------------|-----------------------|-----------|-------|
| Matrix: Water)            |                       |               |                 |                      |                  |                       |           |       |
|                           |                       | Client sample | ing date / time | 23-May-2024<br>11:30 | -                |                       | (1944)    | -     |
| Analyte                   | CAS Number Method/Lab | LOR           | Unit            | VA24B1660-001        | Green I          |                       | Section 1 |       |
|                           |                       |               |                 | Result               | WE               | ( <del>197</del> 2)   | 57.8      | 9772  |
| Total Metals              |                       |               |                 |                      |                  |                       |           |       |
| Rubidium, total           | 7440-17-7 E420/VA     | 0.00020       | mg/L            | <0.00020             | 18775            | 977.2                 | 1555      | 51975 |
| Selenium, total           | 7782-49-2 E420/VA     | 0.000050      | mg/L            | 0.000079             | (0.775)          |                       | 1777      | 35000 |
| Silicon, total            | 7440-21-3 E420/VA     | 0.10          | mg/L            | 5.24                 | 10,7770          | 9 <del>777</del> 8    | 9555      | 5.00  |
| Silver, total             | 7440-22-4 E420/VA     | 0.000010      | mg/L            | <0.000010            | 10.777           | 9 <del>777</del> 8    | 17075     |       |
| Sodium, total             | 7440-23-5 E420/VA     | 0.050         | mg/L            | 1.68                 | 10277780         | 6 <del>777</del> 8    | 1707      | -     |
| Strontium, total          | 7440-24-8 E420/VA     | 0.00020       | mg/L            | 0.0119               | 1027750          | 9 <del>777</del> 8    | 1707      | -     |
| Sulfur, total             | 7704-34-9 E420/VA     | 0.50          | mg/L            | 1.45                 | 1027750          | 9 <del>777</del> 8    | 1707      | -     |
| Fellurium, total          | 13494-8D-9 E420/VA    | 0.00020       | mg/L            | <0.00020             | 1007750          | 9 <del>777</del> 8    | 1200      | -     |
| Thallium, total           | 7440-28-0 E420/VA     | 0.000010      | mg/L            | <0.000010            |                  | 8 <del></del> 8       |           |       |
| Thorium, total            | 7440-29-1 E420/VA     | 0.00010       | mg/L            | <0.00010             |                  | 8 <del></del> 8       |           |       |
| Fin, total                | 7440-31-5 E420/VA     | 0.00010       | mg/L            | <0.00010             | 8 <del></del>    | 8 <del></del> 8       |           |       |
| litanium, total           | 7440-32-6 E420/VA     | 0.00030       | mg/L            | 0.00046              | e                | 8                     |           |       |
| fungsten, total           | 7440-33-7 E420/VA     | 0.00010       | mg/L            | <0.00010             | 8 <del>-11</del> | 8                     |           |       |
| Iranium, total            | 7440-61-1 E420/VA     | 0.000010      | mg/L            | <0.000010            | 8 <del>-11</del> | 8 <del>550</del> 8    |           |       |
| /anadium, total           | 7440-62-2 E420/VA     | 0.00050       | mg/L            | <0.00050             | 8 <del>-11</del> | 8.000                 |           |       |
| Zinc, total               | 7440-66-6 E420/VA     | 0.0030        | mg/L            | <0.0030              | e                | 8 <del>550</del> 8    |           |       |
| Zirconium, total          | 7440-67-7 E420/VA     | 0.00020       | mg/L            | < 0.00020            |                  | :                     |           |       |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 3 of 4

 Work Order
 :
 VA24B5501

 Client
 :
 Village of Lions Bay

Project : ---



## Analytical Results

| Sub-Matrix: Water             |            |            | Clie         | ent sample ID   | Alberta Creek        | <del></del>         | 7-4-7               |      | 2000                 |
|-------------------------------|------------|------------|--------------|-----------------|----------------------|---------------------|---------------------|------|----------------------|
| (Matrix: Water)               |            |            |              |                 |                      |                     |                     |      |                      |
|                               |            |            | Client sampl | ing date / time | 27-Jun-2024<br>12:10 | 222                 |                     | _    | 227                  |
| Analyte                       | CAS Number | Method/Lab | LOR          | Unit            | VA24B5501-001        | 3                   | ( <del></del>       |      | 72-170-176           |
| 2                             |            | M-         |              |                 | Result               |                     | -                   |      |                      |
| Physical Tests                |            | E100/VA    | 1            |                 |                      | -                   |                     |      |                      |
| Conductivity                  |            |            | 2.0          | μS/cm           | 41.5                 | -                   | ( <del>)</del> -()  |      | 0.000                |
| Solids, total dissolved [TDS] |            | E162/VA    | 10           | mg/L            | 33                   | ( <del></del>       | ( <del>) ()</del>   | 1000 |                      |
| Solids, total suspended [TSS] |            | E160/VA    | 3.0          | mg/L            | <3.0                 | -                   | ( <del></del> )     | -    | -                    |
| Organic / Inorganic Carbon    |            | Ha.        | -            |                 | 7                    |                     |                     |      |                      |
| Carbon, total organic [TOC]   |            | E355-L/VA  | 0.50         | mg/L            | 1.04                 | -                   | ( <del></del> )     | 1000 |                      |
| Total Metals                  |            |            | 4            |                 |                      |                     |                     |      |                      |
| Aluminum, total               | 7429-90-5  |            | 0.0030       | mg/L            | 0.0808               | -                   | 5                   |      |                      |
| Antimony, total               | 7440-36-0  |            | 0.00010      | mg/L            | <0.00010             | (i)                 | S <del>-11</del> 8  | 1222 |                      |
| Arsenic, total                | 7440-38-2  |            | 0.00010      | mg/L            | 0.00011              | () <del></del> -    | S <del>-112</del> 8 |      |                      |
| Barium, total                 | 7440-39-3  | E420/VA    | 0.00010      | mg/L            | 0.00378              |                     | ( <del>) ()</del>   |      |                      |
| Beryllium, total              | 7440-41-7  | E420/VA    | 0.000020     | mg/L            | <0.000020            | -                   | 2 <u>222</u> 3      |      |                      |
| Bismuth, total                | 7440-69-9  | E420/VA    | 0.000050     | mg/L            | <0.000050            |                     | 5 <u>446</u> 8      |      |                      |
| Boron, total                  | 7440-42-8  | E420/VA    | 0.010        | mg/L            | 0.012                |                     | 5 <u>446</u> 8      |      |                      |
| Cadmium, total                | 7440-43-9  | E420/VA    | 0.0000050    | mg/L            | 0.0000240            | -                   | 3 <u>444</u> 8      |      | -                    |
| Calcium, total                | 7440-70-2  | E420/VA    | 0.050        | mg/L            | 4.72                 | (1 <del>111</del> ) | 5 <del>22</del> 8   |      | 1000                 |
| Cesium, total                 | 7440-46-2  | E420/VA    | 0.000010     | mg/L            | 0.000013             |                     | 5 <u>755</u> 8      |      | (2004)               |
| Chromium, total               | 7440-47-3  | E420/VA    | 0.00050      | mg/L            | <0.00050             | -                   | 3 <u>254</u> 8      | 1222 | 10-22                |
| Cobalt, total                 | 7440-48-4  | E420/VA    | 0.00010      | mg/L            | 0.00028              |                     | 8 <u>200</u> 8      | 222  | -                    |
| Copper, total                 | 7440-50-8  |            | 0.00050      | mg/L            | 0.00112              |                     | 8 <u>454</u> 8      | 222  | -                    |
| Iron, total                   | 7439-89-6  |            | 0.010        | mg/L            | 0.031                |                     | 5 <u>446</u> 8      | 222  |                      |
| Lead, total                   | 7439-92-1  |            | 0.000050     | mg/L            | <0.000050            | 8 <u>22</u> 8       | 3 <u>444</u> 8      | 222  | ( <u></u>            |
| Lithium, total                | 7439-93-2  |            | 0.0010       | mg/L            | <0.0010              | 832403              | 8 <u>244</u> 8      | 1200 | 0200                 |
| Magnesium, total              | 7439-95-4  |            | 0.0050       | mg/L            | 0.677                | 8200                | 1 <u>244</u> 3      | 1200 | 0.000                |
| Manganese, total              | 7439-98-5  |            | 0.00010      | mg/L            | 0.00465              | 8220                | 8 <u>244</u> 8      | 1200 | 0.000                |
| Mercury, total                | 7439-97-6  |            | 0.0000050    | mg/L            | <0.0000050           | 822                 | 5 <u>244</u> .5     |      | (2 <u>112</u> )      |
| Molybdenum, total             | 7439-98-7  |            | 0.000050     | mg/L            | 0.000296             | 8228                | 12 <u>000</u> 3     | 122  | (2 <del>111</del> 2) |
| Nickel, total                 | 7440-02-0  |            | 0.00050      | mg/L            | <0.00050             | <u> </u>            | 1 <u></u> 1         | 1202 | (2 <u>000</u> )      |
| Phosphorus, total             | 7723-14-0  |            | 0.050        | mg/L            | <0.050               | <u> </u>            | 1200                | 1564 | (1 <u>1111</u> 2)    |
| Potassium, total              | 7440-09-7  |            | 0.050        | mg/L            | 0.121                | <u> </u>            | \$ <u>244.</u> 8    | 1584 | -                    |

 Page
 :
 4 of 4

 Work Order
 :
 VA24B5501

 Client
 :
 Village of Lions Bay

 Project
 :
 --



#### Analytical Results

| Sub-Matrix: Water |                       | Clie          | ent sample ID  | Alberta Creek        |                 | 0777703                                 | 100000      | SECTION |
|-------------------|-----------------------|---------------|----------------|----------------------|-----------------|-----------------------------------------|-------------|---------|
| (Matrix: Water)   |                       |               |                | 42                   |                 |                                         |             |         |
|                   |                       | Client sampli | ng date / time | 27-Jun-2024<br>12:10 |                 | 2                                       |             |         |
| Analyte           | CAS Number Method/Lab | LOR           | Unit           | VA24B5501-001        |                 |                                         | S (EXTENSE) | S-11000 |
|                   |                       |               |                | Result               | =               | ( <del>197</del> 2)                     |             | 9553    |
| Total Metals      |                       |               |                |                      |                 |                                         |             |         |
| Rubidium, total   | 7440-17-7 E420/VA     | 0.00020       | mg/L           | <0.00020             | 10.775          | 977-27                                  | -           | 35,978  |
| Selenium, total   | 7782-49-2 E420/VA     | 0.000050      | mg/L           | 0.000074             | 1057750         | 970723                                  | 1777        | 55000   |
| Silicon, total    | 7440-21-3 E420/VA     | 0.10          | mg/L           | 5.85                 | 1057750         | 9 <del>7002</del> 8                     |             | 5000    |
| Silver, total     | 7440-22-4 E420/VA     | 0.000010      | mg/L           | <0.000010            | 0.777           | 970728                                  |             |         |
| Sodium, total     | 7440-23-5 E420/VA     | 0.050         | mg/L           | 1.77                 | 0.777           | 970728                                  |             |         |
| Strontium, total  | 7440-24-8 E420/VA     | 0.00020       | mg/L           | 0.0151               | 0.777           | 97072                                   |             | -       |
| Sulfur, total     | 7704-34-9 E420/VA     | 0.50          | mg/L           | 2.02                 | 0.777           | 950028                                  |             |         |
| Tellurium, total  | 13494-8D-9 E420/VA    | 0.00020       | mg/L           | <0.00020             | 0.777           | 950028                                  |             | -       |
| Thallium, total   | 7440-28-0 E420/VA     | 0.000010      | mg/L           | <0.000010            | S               |                                         |             |         |
| Thorium, total    | 7440-29-1 E420/VA     | 0.00010       | mg/L           | <0.00010             |                 |                                         |             |         |
| Tin, total        | 7440-31-5 E420/VA     | 0.00010       | mg/L           | <0.00010             |                 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |             |         |
| Titanium, total   | 7440-32-8 E420/VA     | 0.00030       | mg/L           | 0.00053              | e <del></del> - |                                         |             |         |
| Tungsten, total   | 7440-33-7 E420/VA     | 0.00010       | mg/L           | <0.00010             |                 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |             |         |
| Uranium, total    | 7440-61-1 E420/VA     | 0.000010      | mg/L           | <0.000010            |                 |                                         |             | -       |
| Vanadium, total   | 7440-62-2 E420/VA     | 0.00050       | mg/L           | <0.00050             |                 |                                         |             | -       |
| Zinc, total       | 7440-66-6 E420/VA     | 0.0030        | mg/L           | <0.0030              |                 |                                         |             | -       |
| Zirconium, total  | 7440-67-7 E420/VA     | 0.00020       | mg/L           | <0.00020             |                 | 1 <del>1</del> 0                        |             |         |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

 Page
 :
 3 of 4

 Work Order
 :
 VA24B8158

 Client
 :
 Village of Lions Bay

Project : ----



## Analytical Results

| Sub-Matrix: Surface Water     |            |             | Cli         | ient sample ID   | Alberta Creek     |                 |                 |        |                  |
|-------------------------------|------------|-------------|-------------|------------------|-------------------|-----------------|-----------------|--------|------------------|
| (Matrix: Water)               |            |             |             | •                |                   |                 | 2000 027        | 10.000 |                  |
|                               |            |             | Client samn | ling date / time | 24-Jul-2024 12:15 | 0/035           | 1227            | 3222   | 22               |
| Analyte                       | CAS Number | Method/Lab  | LOR         | Unit             | VA24B8158-001     |                 |                 |        |                  |
| Allalyte                      | ONS Number | Welliod Edb | Low         | J.III.           | Result            | A77555          |                 | 000000 |                  |
| Physical Tests                |            |             |             |                  |                   |                 |                 | 120    | 7,550            |
| Conductivity                  |            | E100/VA     | 2.0         | μS/cm            | 48.3              |                 | 102             |        | <u></u> .        |
| Solids, total dissolved [TDS] |            | E162/VA     | 10          | mg/L             | 40                | 78 <u>101</u> 8 | 1 <u>111</u>    | 1000   | 137 <u>-13</u> 1 |
| Solids, total suspended [TSS] |            | E160/VA     | 3.0         | mg/L             | <3.0              | 7522            | 1,017           | 1000   |                  |
| Organic / Inorganic Carbon    |            |             | 1           |                  |                   | - X             |                 |        |                  |
| Carbon, total organic [TOC]   |            | E355-L/VA   | 0.50        | mg/L             | 1.34              |                 |                 |        | 10.00            |
| Total Metals                  |            |             | 9-          |                  |                   |                 |                 | š      |                  |
| Aluminum, total               | 7429-90-5  | E420/VA     | 0.0030      | mg/L             | 0.0563            | 1               | -3 <u>22</u> 0  |        |                  |
| Antimony, total               | 7440-36-0  | E420/VA     | 0.00010     | mg/L             | <0.00010          | 7223            | 1 <u>131</u> 91 | 1000   |                  |
| Arsenic, total                | 7440-38-2  | E420/VA     | 0.00010     | mg/L             | 0.00012           | 1.              | 4 TST 0.4       |        |                  |
| Barium, total                 | 7440-39-3  | E420/VA     | 0.00010     | mg/L             | 0.00443           | _               | 4 TO TO A       |        |                  |
| Beryllium, total              | 7440-41-7  | E420/VA     | 0.000020    | mg/L             | <0.000020         | _               | A 15110.0       |        |                  |
| Bismuth, total                | 7440-69-9  | E420/VA     | 0.000050    | mg/L             | <0.000050         | _               | 4 TO TAKE       |        |                  |
| Boron, total                  | 7440-42-8  | E420/VA     | 0.010       | mg/L             | 0.013             | _               | a 1510 M        |        |                  |
| Cadmium, total                | 7440-43-9  | E420/VA     | 0.0000050   | mg/L             | 0.0000216         | -               | a 1510 M        |        |                  |
| Calcium, total                | 7440-70-2  | E420/VA     | 0.050       | mg/L             | 5.56              | -               | 4 TST 14        |        |                  |
| Cesium, total                 | 7440-46-2  | E420/VA     | 0.000010    | mg/L             | 0.000012          | -               | a 1511          |        |                  |
| Chromium, total               | 7440-47-3  |             | 0.00050     | mg/L             | < 0.00050         | -               | a 1510.0        |        |                  |
| Cobalt, total                 | 7440-48-4  |             | 0.00010     | mg/L             | 0.00019           | -               | a 1510.0        |        |                  |
| Copper, total                 | 7440-50-8  |             | 0.00050     | mg/L             | 0.00100           | 1               | a 1510 A        |        |                  |
| Iron, total                   | 7439-89-6  | E420/VA     | 0.010       | mg/L             | 0.019             |                 |                 |        |                  |
| Lead, total                   | 7439-92-1  | E420/VA     | 0.000050    | mg/L             | <0.000050         |                 |                 |        |                  |
| Lithium, total                | 7439-93-2  | E420/VA     | 0.0010      | mg/L             | <0.0010           |                 |                 |        |                  |
| Magnesium, total              | 7439-95-4  | E420/VA     | 0.0050      | mg/L             | 0.754             |                 |                 |        |                  |
| Manganese, total              | 7439-96-5  | E420/VA     | 0.00010     | mg/L             | 0.00329           | _               | -               |        |                  |
| Mercury, total                | 7439-97-6  | E508/VA     | 0.0000050   | mg/L             | <0.0000050        | _               | -               |        |                  |
| Molybdenum, total             | 7439-98-7  | E420/VA     | 0.000050    | mg/L             | 0.000318          |                 | _               |        |                  |
| Nickel, total                 | 7440-02-0  | E420/VA     | 0.00050     | mg/L             | < 0.00050         | _               | -               |        |                  |
| Phosphorus, total             | 7723-14-0  |             | 0.050       | mg/L             | <0.050            | _               | -               |        |                  |
| Potassium, total              | 7440-09-7  |             | 0.050       | mg/L             | 0.116             | _               |                 |        |                  |
| Rubidium, total               | 7440-17-7  |             | 0.00020     | mg/L             | <0.00020          | -               |                 |        |                  |
|                               |            |             | 4           | -                | 2                 | 1               |                 | 8      | A                |

ALS

 Page
 :
 4 of 4

 Work Order
 :
 VA24B8158

 Client
 :
 Village of Lions Bay

Project : ---

#### Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clie                  | nt sample ID   | Alberta Creek     | 657   | (ASSESSED           | 833700 | 5775  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------|-------|---------------------|--------|-------|
| The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client sampli         | ng date / time | 24-Jul-2024 12:15 | _     |                     | -      |       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAS Number Method/Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOR                   | Unit           | VA24B8158-001     |       |                     |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | Result            | _     |                     |        |       |
| Total Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NAME OF THE OWNER, WHEN THE OW | and constructions and |                | V                 |       |                     |        |       |
| Selenium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7782-49-2 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000050              | mg/L           | 0.000118          | -     | (                   |        |       |
| Silicon, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-21-3 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                  | mg/L           | 6.84              | 3,000 | 2 <del>000</del> 2  | 1999   | -     |
| Silver, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-22-4 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010              | mg/L           | <0.000010         | 2000  | 2000                | 3000   | -     |
| Sodium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-23-5 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050                 | mg/L           | 2.04              | 2000  | 2 <del>000</del> 2  |        |       |
| Strontium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-24-8 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020               | mg/L           | 0.0193            | 2000  | 2000                |        |       |
| Sulfur, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7704-34-9 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50                  | mg/L           | 2.79              |       | ( <del>1700</del> ) |        |       |
| Tellurium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13494-80-9 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020               | mg/L           | <0.00020          | -     | ( <del></del> )     |        |       |
| Thallium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-28-0 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010              | mg/L           | <0.000010         |       | ( <del>1111</del> ) |        |       |
| Thorium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-29-1 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010               | mg/L           | <0.00010          |       | ( <del>1111</del> ) |        |       |
| Tin, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440-31-5 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010               | mg/L           | <0.00010          |       | ( <u>1111</u> )     |        |       |
| Titanium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-32-6 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00030               | mg/L           | 0.00043           | -     | 5 <del>112</del> 5  |        |       |
| Tungsten, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-33-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010               | mg/L           | <0.00010          | -     | 5 <del>112</del> 5  |        |       |
| Uranium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-61-1 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000010              | mg/L           | <0.000010         | -     | ( <del>1111</del> ) |        |       |
| Vanadium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-62-2 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00050               | mg/L           | <0.00050          | -     | 0.000               |        | -     |
| Zinc, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7440-66-8 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0030                | mg/L           | <0.0030           | -     | 5 <del>111</del> 5  |        | -     |
| Zirconium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-67-7 E420/VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020               | mg/L           | <0.00020          | -     | 5 <del>200</del> 8  |        | 0.000 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Page : 3 of 4

Work Order : VA24C2252 Amendment 1
Client : Village of Lions Bay

Project : ---



## Analytical Results

| Sub-Matrix: Surface Water             |            |            | Cli          | ent sample ID   | Alberta Creek        | <del></del>     | 12 <del>-11-</del> 3  |          | 2000           |
|---------------------------------------|------------|------------|--------------|-----------------|----------------------|-----------------|-----------------------|----------|----------------|
| (Matrix: Water)                       |            |            |              |                 |                      |                 |                       |          |                |
|                                       |            |            | Client sampl | ing date / time | 28-Aug-2024<br>12:10 |                 |                       | _        | <u> </u>       |
| Analyte                               | CAS Number | Method/Lab | LOR          | Unit            | VA24C2252-001        | 322000          | ( <del></del>         | <u> </u> | 7              |
|                                       |            |            |              |                 | Result               |                 | -                     | 222      |                |
| Physical Tests                        |            | E40044     | 1 20         |                 | -                    |                 |                       |          |                |
| Conductivity                          |            | E100/VA    | 2.0          | μS/cm           | 55.1                 | St <del></del>  | 2                     | 10000    | 0.000          |
| Hardness (as CaCO3), from total Ca/Mg |            | EC100A/VA  | 0.50         | mg/L            | 19.8                 |                 | 0- <del>0-0-</del> 88 | 18795    | -              |
| Solids, total dissolved [TDS]         |            | E162/VA    | 10           | mg/L            | 56                   | 0.000           | 5-110                 |          |                |
| Solids, total suspended [TSS]         |            | E160/VA    | 3.0          | mg/L            | <3.0                 | -               | -                     |          |                |
| Organic / Inorganic Carbon            |            | E355-L/VA  | 0.50         |                 | 101                  |                 | -                     | - San    |                |
| Carbon, total organic [TOC]           |            | E300-DVA   | 0.50         | mg/L            | 1.04                 |                 | (                     |          |                |
| Total Metals                          |            | C400014    | 0.0000       |                 | 0.0000               | 1               |                       |          |                |
| Aluminum, total                       | 7429-90-5  |            | 0.0030       | mg/L            | 0.0298               | 0.00            | (3-1-1-1)             |          |                |
| Antimony, total                       | 7440-36-0  |            | 0.00010      | mg/L            | 0.00043              |                 | 0.000                 |          |                |
| Arsenic, total                        | 7440-38-2  |            | 0.00010      | mg/L            | 0.00096              |                 | 5,                    |          |                |
| Barium, total                         | 7440-39-3  |            | 0.00010      | mg/L            | 0.00375              | S               |                       |          |                |
| Beryllium, total                      | 7440-41-7  |            | 0.000020     | mg/L            | <0.000020            | · ·             |                       |          |                |
| Bismuth, total                        | 7440-69-9  |            | 0.000050     | mg/L            | <0.000050            | _               | 3-22-3                |          |                |
| Boron, total                          | 7440-42-8  |            | 0.010        | mg/L            | 0.016                |                 | 3.000                 |          |                |
| Cadmium, total                        | 7440-43-9  |            | 0.0000050    | mg/L            | 0.0000225            |                 | 3,000                 | 222      | -              |
| Calcium, total                        | 7440-70-2  |            | 0.050        | mg/L            | 6.63                 | 3 <u></u> -     | 3 <u>446</u> 8        | 222      | -              |
| Cesium, total                         | 7440-46-2  |            | 0.000010     | mg/L            | 0.000018             |                 | 3 <u>44</u> 8         | 222      |                |
| Chromium, total                       | 7440-47-3  |            | 0.00050      | mg/L            | <0.00050             | S               | 3 <del>44</del> 8     |          |                |
| Cobalt, total                         | 7440-48-4  |            | 0.00010      | mg/L            | <0.00010             | S               | 3 <del>44</del> 8     |          |                |
| Copper, total                         | 7440-50-8  |            | 0.00050      | mg/L            | 0.00087              |                 | 3 <u>1111</u> 8       |          | 1000           |
| iron, total                           | 7439-89-6  | E420/VA    | 0.010        | mg/L            | 0.023                | -               | 3 <u>200</u> 3        | 1222     | -              |
| Lead, total                           | 7439-92-1  | E420/VA    | 0.000050     | mg/L            | <0.000050            | (S220)          | 1 <u></u> 1           |          |                |
| Lithium, total                        | 7439-93-2  | E420/VA    | 0.0010       | mg/L            | <0.0010              | (S122)          | 9 <u>244</u> 8        |          |                |
| Magnesium, total                      | 7439-95-4  | E420/VA    | 0.0050       | mg/L            | 0.786                | (52.00)         | 3 <u></u> 3           |          |                |
| Manganese, total                      | 7439-96-5  | E420/VA    | 0.00010      | mg/L            | 0.00126              | 820             | 0 <u>244</u> 3        |          | -              |
| Mercury, total                        | 7439-97-6  | E508/VA    | 0.0000050    | mg/L            | <0.0000050           | 83 <u>00</u> 8  | 3 <u>244</u> .8       |          | (200           |
| Molybdenum, total                     | 7439-98-7  | E420/VA    | 0.000050     | mg/L            | 0.000376             | 83 <u>242</u> 8 | 3 <u>244</u> .8       | 200      | (2 <b>44</b> ) |
| Nickel, total                         | 7440-02-0  | E420/VA    | 0.00050      | mg/L            | <0.00050             | 8 <u>24</u> 8   | <u></u>               | 200      |                |
| Phosphorus, total                     | 7723-14-0  | W 20175500 | 0.050        | mg/L            | <0.050               | 82.00           | 3 <u>244</u> 3        | 222      | -              |

alsglobal.com

Page : 4 of 4

Work Order : VA24C2252 Amendment 1
Client : Village of Lions Bay

Project : ----



#### Analytical Results

| Sub-Matrix: Surface Water |                       | Clier          | nt sample ID   | Alberta Creek        |        | UTSTELY             | 11.57754             |  |
|---------------------------|-----------------------|----------------|----------------|----------------------|--------|---------------------|----------------------|--|
| Matrix: Water)            |                       |                |                |                      |        |                     |                      |  |
|                           |                       | Client samplin | ng date / time | 28-Aug-2024<br>12:10 |        | 3                   |                      |  |
| Analyte                   | CAS Number Method/Lab | LOR            | Unit           | VA24C2252-001        |        |                     | <del>100000</del> 54 |  |
|                           |                       |                |                | Result               | 1500   | 1,777.2             | 777/4                |  |
| Total Metals              |                       |                |                |                      |        |                     |                      |  |
| Potassium, total          | 7440-09-7 E420/VA     | 0.050          | mg/L           | 0.318                | A-376  | 8.00                | 777                  |  |
| Rubidium, total           | 7440-17-7 E420/VA     | 0.00020        | mg/L           | 0.00044              | 34.550 | A 1770              | (777)                |  |
| Selenium, total           | 7782-49-2 E420/VA     | 0.000050       | mg/L           | 0.000094             | 1.77   | 2 <del>777</del> 2  |                      |  |
| Silicon, total            | 7440-21-3 E420/VA     | 0.10           | mg/L           | 6.95                 | 1.77   | - <del></del>       |                      |  |
| Silver, total             | 7440-22-4 E420/VA     | 0.000010       | mg/L           | <0.000010            |        | 1 <del>751</del> 51 |                      |  |
| Sodium, total             | 7440-23-5 E420/VA     | 0.050          | mg/L           | 2.86                 |        | 1 TOTAL             |                      |  |
| Strontium, total          | 7440-24-6 E420/VA     | 0.00020        | mg/L           | 0.0195               |        | 1 <del>751</del> 51 |                      |  |
| Sulfur, total             | 7704-34-9 E420/VA     | 0.50           | mg/L           | 3.23                 |        | -                   |                      |  |
| Fellurium, total          | 13494-80-9 E420/VA    | 0.00020        | mg/L           | <0.00020             |        |                     |                      |  |
| Thallium, total           | 7440-28-0 E420/VA     | 0.000010       | mg/L           | <0.000010            |        |                     |                      |  |
| Thorium, total            | 7440-29-1 E420/VA     | 0.00010        | mg/L           | <0.00010             |        |                     |                      |  |
| Fin, total                | 7440-31-5 E420/VA     | 0.00010        | mg/L           | <0.00010             |        |                     |                      |  |
| litanium, total           | 7440-32-6 E420/VA     | 0.00030        | mg/L           | <0.00030             |        |                     |                      |  |
| Tungsten, total           | 7440-33-7 E420/VA     | 0.00010        | mg/L           | <0.00010             |        | _                   |                      |  |
| Jranium, total            | 7440-61-1 E420/VA     | 0.000010       | mg/L           | <0.000010            |        | _                   |                      |  |
| anadium, total            | 7440-62-2 E420/VA     | 0.00050        | mg/L           | <0.00050             |        | -                   |                      |  |
| line, total               | 7440-86-8 E420/VA     | 0.0030         | mg/L           | <0.0030              | 2.5500 |                     |                      |  |
| Zirconium, total          | 7440-67-7 E420/VA     | 0.00020        | mg/L           | <0.00020             | 30000  | 125,122             | 2507                 |  |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Work Order : VA24C5331 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)  |            |                          | Client san         | ple ID | Alberta Creek     |                     | 13                  |                 |                 |
|---------------------------------------|------------|--------------------------|--------------------|--------|-------------------|---------------------|---------------------|-----------------|-----------------|
|                                       | 10         | Ci                       | lent sampling date | / time | 24-Sep-2024 11:45 | (F-12)              |                     | 51              | 1999            |
| Analyte                               | CAS Number | Method/Lab/Accreditation | LOR                | Unit   | VA24C5331-001     |                     | , <del></del> ,     |                 |                 |
|                                       |            |                          |                    |        | Result            | 10-00-0             | -                   |                 |                 |
| Physical Tests                        |            |                          |                    |        |                   |                     |                     |                 | 16              |
| Conductivity                          |            | E100/VA                  | 2.0                | μS/cm  | 57.6              | 17.227              |                     | 2-3             | 9 <u>-22</u>    |
| Hardness (as CaCO3), from total Ca/Mg | 15.00      | EC100A/WT                | 0.50               | mg/L   | 20.5              |                     |                     | _               | 7               |
| Solids, total dissolved [TDS]         |            | E162/VA                  | 10                 | mg/L   | 53                |                     | -                   | 11              |                 |
| Solids, total suspended [TSS]         | :          | E160/VA                  | 3.0                | mg/L   | <3.0              |                     | -                   | 111             |                 |
| Organic / Inorganic Carbon            |            |                          |                    |        |                   |                     |                     |                 | 10              |
| Carbon, total organic [TOC]           | -          | E355-L/VA                | 0.50               | mg/L   | 0.74              | -                   | -                   | -               |                 |
| Total Metals                          |            |                          |                    |        |                   |                     | 15                  |                 | 16              |
| Aluminum, total                       | 7429-90-5  | E420/WT                  | 0.0030             | mg/L   | 0.0219            | 12 <u></u>          | 0.2220              | V—V             |                 |
| Antimony, total                       | 7440-38-0  | E420/WT                  | 0.00010            | mg/L   | 0.00028           | 7                   |                     | 3-2             |                 |
| Arsenic, total                        | 7440-38-2  | E420/WT                  | 0.00010            | mg/L   | 0.00055           | P.22                | -                   | -               |                 |
| Barium, total                         | 7440-39-3  | E420/WT                  | 0.00010            | mg/L   | 0.00424           | 1                   | 1 <u></u> 1         | 111             | 7-2             |
| Beryllium, total                      | 7440-41-7  | E420/WT                  | 0.000020           | mg/L   | <0.000020         | -                   |                     | 17              | -               |
| Bismuth, total                        | 7440-69-9  | E420/WT                  | 0.000050           | mg/L   | <0.000050         |                     |                     | 11              |                 |
| Boron, total                          | 7440-42-8  | E420/WT                  | 0.010              | mg/L   | 0.016             | 1                   |                     | ; <del></del> ; |                 |
| Cadmium, total                        | 7440-43-9  | E420/WT                  | 0.0000050          | mg/L   | 0.0000248         | 11                  | 10                  | s <del></del>   | ( <del></del>   |
| Calcium, total                        | 7440-70-2  | E420/WT                  | 0.050              | mg/L   | 6.85              | 1                   | ( <del></del> )     | 5 <del></del> 2 | 1,1             |
| Cesium, total                         | 7440-46-2  | E420/WT                  | 0.000010           | mg/L   | 0.000014          | 11                  | 10000               | 6777.0          | 10-11-12        |
| Chromium, total                       | 7440-47-3  | E420/WT                  | 0.00050            | mg/L   | <0.00050          | \$ <del>555</del> 8 | 2 <del>555</del> 5  | 6577.0          | 127754          |
| Cobalt, total                         | 7440-48-4  | E420/WT                  | 0.00010            | mg/L   | <0.00010          | p <del>.773</del> 8 | 10 <del>000</del> 5 | ( <u></u> )     |                 |
| Copper, total                         | 7440-50-8  | E420/WT                  | 0.00050            | mg/L   | 0.00123           | \$ <u>000</u> 8     | 8 <u>000</u> 9      | 3223            | 13 <u>000</u> 1 |
| Iron, total                           | 7439-89-6  | E420/WT                  | 0.010              | mg/L   | 0.026             | (* <u>1.52</u> );   | <u></u>             | 3-5             | : <u></u> :     |

Work Order : VA24C5331 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |                                     | Client sa            | mple ID | Alberta Creek     | 65 <del>77</del> 8   | 0. <del>1775</del> K  | 9 <u>477</u> ).  | 3225                  |
|--------------------------------------|-------------------------------------|----------------------|---------|-------------------|----------------------|-----------------------|------------------|-----------------------|
|                                      |                                     | Cilent sampling date | /tlme   | 24-Sep-2024 11:45 |                      | -                     |                  |                       |
| Analyte                              | CAS Number Method/Lab/Accreditation | LOR                  | Unit    | VA24C5331-001     | / <u></u>            | > <u></u> >           |                  |                       |
|                                      |                                     |                      |         | Result            | 10 <u></u> )         |                       |                  | 222                   |
| Total Metals                         |                                     |                      |         |                   |                      |                       |                  |                       |
| Lead, total                          | 7439-92-1 E420/WT                   | 0.000050             | mg/L    | <0.000050         | 3 <del></del> 3      |                       | 1. <del></del> 1 |                       |
| Lithium, total                       | 7439-93-2 E420/WT                   | 0.0010               | mg/L    | <0.0010           | 12                   | · ·                   | 1 1              |                       |
| Magnesium, total                     | 7439-95-4 E420/WT                   | 0.0050               | mg/L    | 0.836             | 11                   | ( <del></del> .)      | -                | 1                     |
| Manganese, total                     | 7439-96-5 E420/WT                   | 0.00010              | mg/L    | 0.00100           | 11                   | -                     | 5-7-2            | 100000                |
| Mercury, total                       | 7439-97-6 E508/VA                   | 0.0000050            | mg/L    | <0.0000050        | 1,775,4              | 10000                 | 67770            | 10 <del>-111</del> 12 |
| Molybdenum, total                    | 7439-98-7 E420/WT                   | 0.000050             | mg/L    | 0.000308          | \$5 <del>555</del> 5 | 2 <del>555</del> 6    | 633750           | 127734                |
| Nickel, total                        | 7440-02-0 E420/WT                   | 0.00050              | mg/L    | <0.00050          | 9. <del>1111</del> 6 | 1855                  | <u>(200</u> )    |                       |
| Phosphorus, total                    | 7723-14-0 E420/WT                   | 0.050                | mg/L    | <0.050            | 0 <u>000</u> 2       | 0 <u>242</u> 0        | -                | * <u></u> *           |
| Potassium, total                     | 7440-09-7 E420/WT                   | 0.050                | mg/L    | 0.232             |                      |                       | 3-25             |                       |
| Rubidium, total                      | 7440-17-7 E420/WT                   | 0.00020              | mg/L    | 0.00034           | P.0271               | ( <u></u> )           | -                |                       |
| Selenium, total                      | 7782-49-2 E420/WT                   | 0.000050             | mg/L    | 0.000085          | (-12)                | -                     | 17               | 7                     |
| Silicon, total                       | 7440-21-3 E420/WT                   | 0.10                 | mg/L    | 6.83              | 1                    |                       | 17               | -                     |
| Silver, total                        | 7440-22-4 E420/WT                   | 0.000010             | mg/L    | <0.000010         |                      |                       | 11               |                       |
| Sodium, total                        | 7440-23-5 E420/WT                   | 0.050                | mg/L    | 2.49              | 12                   | -                     | i —              |                       |
| Strontium, total                     | 7440-24-6 E420/WT                   | 0.00020              | mg/L    | 0.0205            | 11                   | 10 <del></del>        | .—.              | 1                     |
| Sulfur, total                        | 7704-34-9 E420/WT                   | 0.50                 | mg/L    | 3.97              | i :                  | (1 <del>1111</del> 1) | 5.77.2           | 11                    |
| Tellurium, total                     | 13494-80-9 E420/WT                  | 0.00020              | mg/L    | <0.00020          | 1,                   | 10000                 | 6.000            |                       |
| Thallium, total                      | 7440-28-0 E420/WT                   | 0.000010             | mg/L    | <0.000010         | s. <del>1111</del> 6 | 107776                | OTTO             | 11.777.4              |
| Thorium, total                       | 7440-29-1 E420/WT                   | 0.00010              | mg/L    | <0.00010          | s. <del>1111</del> 6 | 107773                | ( <u>111</u> 6)  | 11 <u></u> 11         |
| Tin, total                           | 7440-31-5 E420/WT                   | 0.00010              | mg/L    | <0.00010          | * <u></u> -          | 122                   | 3-5              |                       |
| Titanium, total                      | 7440-32-6 E420/WT                   | 0.00030              | mg/L    | <0.00030          | 1                    | _                     | 325              |                       |

Work Order : VA24C5331 Client : Village of Lions Bay

Project : ----



#### Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |             |                          | Client sa           | mple ID | Alberta Creek     | BANCE.               | 6. <del>777.</del> 8 | 4 <del>55</del> 7 | <del>188</del> 6 |
|--------------------------------------|-------------|--------------------------|---------------------|---------|-------------------|----------------------|----------------------|-------------------|------------------|
| 2 25                                 |             | С                        | lient sampling date | /tlme   | 24-Sep-2024 11:45 |                      |                      | ; (               |                  |
| Analyte                              | CAS Number  | Method/Lab/Accreditation | LOR                 | Unit    | VA24C5331-001     |                      | 7                    | ( )               |                  |
| pil.1                                |             |                          |                     |         | Result            | (1 <u>-111</u> )     | 7- <u></u>           | S-1123            | 19000            |
| Total Metals                         |             |                          |                     |         |                   |                      |                      |                   |                  |
| Tungsten, total                      | 7440-33-7 E | 420/WT                   | 0.00010             | mg/L    | <0.00010          | :                    |                      | 2                 |                  |
| Uranium, total                       | 7440-61-1 E | 420/WT                   | 0.000010            | mg/L    | <0.000010         | 1                    |                      | -                 | -                |
| Vanadium, total                      | 7440-62-2 E | 420/WT                   | 0.00050             | mg/L    | <0.00050          | 6 <del>111</del> .2  | -                    | i —               |                  |
| Zinc, total                          | 7440-66-6 E | 420/WT                   | 0.0030              | mg/L    | <0.0030           | 1. <del>111</del> .1 |                      | 5-2               | -                |
| Zirconium, total                     | 7440-67-7 E | 420/WT                   | 0.00020             | mg/L    | <0.00020          | 1. <del>100</del> .2 | _                    | 6777.0            | 1000             |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Work Order : VA24C8284 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |                          | Client san          | ple ID | Alberta Creek     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22              |                 |                     |
|----------------------------------------------|------------|--------------------------|---------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------|
|                                              |            | C                        | lient sampling date | / time | 22-Oct-2024 12:00 | 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        | 51.23           | 10000               |
| Analyte                                      | CAS Number | Method/Lab/Accreditation | LOR                 | Unit   | VA24C8284-001     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <del></del> , | , <del></del> ) |                     |
|                                              |            |                          |                     |        | Result            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -               | 7.00            |                     |
| Physical Tests                               |            |                          |                     |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | ge .            | 16                  |
| Conductivity                                 | -          | E100/VA                  | 2.0                 | µS/cm  | 52.9              | 17.2227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 2               | N-22                |
| Hardness (as CaCO3), from total Ca/Mg        | r <u>-</u> | EC100A/CG                | 0.50                | mg/L   | 18.2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04440           | 2               | ·                   |
| Solids, total dissolved [TDS]                |            | E162/VA                  | 10                  | mg/L   | 50                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1944            | -               |                     |
| Solids, total suspended [TSS]                |            | E160/VA                  | 3.0                 | mg/L   | <3.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 1111            |                     |
| Organic / Inorganic Carbon                   |            |                          |                     |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                 | 10                  |
| Carbon, total organic [TOC]                  |            | E355-L/CG                | 0.50                | mg/L   | 1.34              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -               | _               |                     |
| Total Metals                                 |            |                          |                     |        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 14            | **              | 16                  |
| Aluminum, total                              | 7429-90-5  | E420/CG                  | 0.0030              | mg/L   | 0.0379            | 100 <u>- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -</u> | 0.2220          | 7-7             |                     |
| Antimony, total                              | 7440-36-0  | E420/CG                  | 0.00010             | mg/L   | <0.00010          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 3-25            |                     |
| Arsenic, total                               | 7440-38-2  | E420/CG                  | 0.00010             | mg/L   | 0.00014           | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               | -               |                     |
| Barium, total                                | 7440-39-3  | E420/CG                  | 0.00010             | mg/L   | 0.00401           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 1717            | 7                   |
| Beryllium, total                             | 7440-41-7  | E420/CG                  | 0.000020            | mg/L   | <0.000020         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 17              | -                   |
| Bismuth, total                               | 7440-69-9  | E420/CG                  | 0.000050            | mg/L   | <0.000050         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 11              |                     |
| Boron, total                                 | 7440-42-8  | E420/CG                  | 0.010               | mg/L   | 0.012             | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | _               |                     |
| Cadmium, total                               | 7440-43-9  | E420/CG                  | 0.0000050           | mg/L   | 0.0000241         | 1 <del></del> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( <del></del> ) | ; <del></del> ; |                     |
| Calcium, total                               | 7440-70-2  | E420/CG                  | 0.050               | mg/L   | 6.02              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10              | 3               |                     |
| Cesium, total                                | 7440-46-2  | E420/CG                  | 0.000010            | mg/L   | <0.000010         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10000           | 0000            | 11 <del>-11</del> 7 |
| Chromium, total                              | 7440-47-3  | E420/CG                  | 0.00050             | mg/L   | <0.00050          | 9. <del>711</del> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               | 0000            | . <del></del> -     |
| Cobalt, total                                | 7440-48-4  | E420/CG                  | 0.00010             | mg/L   | 0.00014           | s <del>777</del> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -               | 00              | 1 222               |
| Copper, total                                | 7440-50-8  | E420/CG                  | 0.00050             | mg/L   | 0.00103           | 12 <u>222</u> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _               | 3-5             |                     |
| Iron, total                                  | 7439-89-6  | E420/CG                  | 0.010               | mg/L   | 0.012             | 7 <u>54</u> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 <u></u> 3     | 3225            | 5 <u></u> 5         |

Work Order : VA24C8284 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |                        |                          | Client sa           | mple ID | Alberta Creek     | A                     | 0. <del>1775</del> K | \$ <del>\$\$</del> 3.1 |                    |
|----------------------------------------------|------------------------|--------------------------|---------------------|---------|-------------------|-----------------------|----------------------|------------------------|--------------------|
|                                              |                        | С                        | llent sampling date | / time  | 22-Oct-2024 12:00 |                       | -                    |                        |                    |
| Analyte                                      | CAS Number             | Method/Lab/Accreditation | LOR                 | Unit    | VA24C8284-001     | Name:                 | -                    | ( <del></del>          |                    |
|                                              |                        |                          |                     |         | Result            |                       |                      |                        |                    |
| Total Metals                                 |                        |                          |                     |         |                   |                       |                      |                        |                    |
| Lead, total                                  | 7439-92-1              | E420/CG                  | 0.000050            | mg/L    | <0.000050         |                       | -                    | 11                     | ·                  |
| Lithium, total                               | 7439-93-2              | E420/CG                  | 0.0010              | mg/L    | <0.0010           | 1                     |                      | i — i                  |                    |
| Magnesium, total                             | 7439-95-4              | E420/CG                  | 0.0050              | mg/L    | 0.758             | 11                    | -                    | i —                    |                    |
| Manganese, total                             | 7439-96-5              | E420/CG                  | 0.00010             | mg/L    | 0.00250           |                       |                      | 5.77.2                 | N <del>-11</del> 2 |
| Mercury, total                               | 7439-97-6              | E508/VA                  | 0.0000050           | mg/L    | <0.0000050        |                       | -                    | 0.000                  |                    |
| Molybdenum, total                            | 7439-98-7              | E420/CG                  | 0.000050            | mg/L    | 0.000235          | \$. <del>1111</del> 6 | 1800                 | 0.000                  | 1877               |
| Nickel, total                                | 7440-02-0              | E420/CG                  | 0.00050             | mg/L    | 0.00249           | 5.7775                | 12 <del>777</del> 5  | ( <u>111</u> 5)        | S-22-1             |
| Phosphorus, total                            | 7723-14-0              | E420/CG                  | 0.050               | mg/L    | <0.050            | \$ <u>211</u> 8       | 8 <u>011</u> 8       | 3223                   | 8000               |
| Potassium, total                             | 7440-09-7              | E420/CG                  | 0.050               | mg/L    | 0.113             | Page                  |                      | 3-3                    | 5 <u></u> 5        |
| Rubidium, total                              | 7440-17-7              | E420/CG                  | 0.00020             | mg/L    | <0.00020          | 7.22                  |                      | -                      | 7-27               |
| Selenium, total                              | 7782 <del>-4</del> 9-2 | E420/CG                  | 0.000050            | mg/L    | 0.000079          |                       |                      | 1-1                    |                    |
| Silicon, total                               | 7440-21-3              | E420/CG                  | 0.10                | mg/L    | 5.98              |                       |                      |                        |                    |
| Silver, total                                | 7440-22-4              | E420/CG                  | 0.000010            | mg/L    | <0.000010         |                       |                      | 11                     |                    |
| Sodium, total                                | 7440-23-5              | E420/CG                  | 0.050               | mg/L    | 1.89              | 12                    | -                    | i —                    |                    |
| Strontium, total                             | 7440-24-6              | E420/CG                  | 0.00020             | mg/L    | 0.0181            | 11                    | ( <del>)</del> ()    | 1-                     | -                  |
| Sulfur, total                                | 7704-34-9              | E420/CG                  | 0.50                | mg/L    | 3.65              |                       | ( <del></del> -)     | 5.702                  | 100000             |
| Tellurium, total                             | 13494-80-9             | E420/CG                  | 0.00020             | mg/L    | <0.00020          | 1. <del>1771</del> .4 | 1 <del>111</del> /   | 6555                   | 1, <del></del> 2   |
| Thallium, total                              | 7440-28-0              | E420/CG                  | 0.000010            | mg/L    | <0.000010         | s. <del>1115</del> 6  | 18776                | 6.000                  | 10777              |
| Thorium, total                               | 7440-29-1              | E420/CG                  | 0.00010             | mg/L    | <0.00010          | s. <del>1111</del> 6  | 1/57756              | 6 <u>111</u> 6)        | 3 <u>-2-4</u> 3    |
| Tin, total                                   | 7440-31-5              | E420/CG                  | 0.00010             | mg/L    | <0.00010          | \$ <u>111</u> 8       | 1 <u>111</u> 1       | 3-5                    | S                  |
| Titanium, total                              | 7440-32-6              | E420/CG                  | 0.00030             | mg/L    | <0.00030          | 7                     | _                    | 325                    |                    |

Work Order : VA24C8284 Client : Village of Lions Bay

Project : ---



#### Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |                          | Client sa           | mple ID | Alberta Creek     | 95,0                 | 6 <del>177</del> 8 | 4 <del>55</del> 7  | - TV-1               |
|----------------------------------------------|------------|--------------------------|---------------------|---------|-------------------|----------------------|--------------------|--------------------|----------------------|
| 2                                            |            | С                        | lient sampling date | /tlme   | 22-Oct-2024 12:00 |                      | -                  |                    |                      |
| Analyte                                      | CAS Number | Method/Lab/Accreditation | LOR                 | Unit    | VA24C8284-001     | 1                    | 2                  | ( )                |                      |
| 100                                          |            |                          |                     |         | Result            | (1 <u></u> )         | 7-2                | S-1123             | 8000                 |
| Total Metals                                 |            |                          |                     |         |                   |                      |                    |                    |                      |
| Tungsten, total                              | 7440-33-7  | E420/CG                  | 0.00010             | mg/L    | <0.00010          |                      |                    | 2                  | -                    |
| Jranium, total                               | 7440-81-1  | E420/CG                  | 0.000010            | mg/L    | <0.000010         | 11                   |                    | -                  | -                    |
| /anadium, total                              | 7440-82-2  | E420/CG                  | 0.00050             | mg/L    | <0.00050          | 1. <del></del> .1    | -                  | i —                | 0                    |
| Zinc, total                                  | 7440-66-6  | E420/CG                  | 0.0030              | mg/L    | 0.0040            | 1. <del></del> .1    |                    | ( <del></del> )    | -                    |
| Circonium, total                             | 7440-87-7  | E420/CG                  | 0.00020             | mg/L    | <0.00020          | 16 <del>171</del> 14 | 1,550              | 5 <del>111</del> 0 | 10 <del>1111</del> 1 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Work Order : VA24D1987 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |            | Client sar           | mple ID  | Alberta Creek     | Harvey Creek         | Magnesia Creek     |                   |                   |
|----------------------------------------------|------------|------------|----------------------|----------|-------------------|----------------------|--------------------|-------------------|-------------------|
|                                              |            |            | Client sampling date | / time   | 26-Nov-2024 00:00 | 26-Nov-2024 00:00    | 26-Nov-2024 00:00  | <u> </u>          | <u>510</u> 0      |
| Analyte                                      | CAS Number | Method/Lab | LOR                  | Unit     | VA24D1987-001     | VA24D1987-002        | VA24D1987-003      |                   |                   |
|                                              |            |            |                      |          | Result            | Result               | Result             | 7.00              |                   |
| Physical Tests                               |            |            |                      |          |                   |                      |                    |                   |                   |
| Conductivity                                 |            | E100/VA    | 2.0                  | μS/cm    | 48.6              | P. <u>1</u> *3       |                    | 2-3               | -                 |
| Hardness (as CaCO3), from total Ca/Mg        | _          | EC100A/VA  | 0.50                 | mg/L     | 16.3              |                      |                    | 2                 | 7 <u></u> 7       |
| рН                                           |            | E108/VA    | 0.10                 | pH units | 7.17              | 7-27                 | 11                 | 17 <del></del> 17 | -                 |
| Solids, total dissolved [TDS]                | -          | E162/VA    | 10                   | mg/L     | 40                | ;;                   |                    | 7 7               | -                 |
| Solids, total suspended [TSS]                |            | E160/VA    | 3.0                  | mg/L     | <3.0              |                      |                    | 1 <del></del> 1   | -                 |
| Turbidity                                    | -          | E121/VA    | 0.10                 | NTU      | 0.19              |                      |                    | -                 | () <del></del> () |
| Anions and Nutrients                         |            |            |                      |          |                   |                      |                    |                   | AC .              |
| Fluoride                                     | 16984-48-8 | E235.F/VA  | 0.020                | mg/L     | 0.033             | <0.020               | 0.027              | 6,777,0           | 1,775             |
| Organic / Inorganic Carbon                   |            |            |                      | 12       |                   |                      |                    |                   |                   |
| Carbon, total organic [TOC]                  | F1-1       | E355-L/VA  | 0.50                 | mg/L     | <0.50             | 7                    |                    | -                 | السان             |
| Total Metals                                 |            |            |                      |          |                   |                      |                    |                   |                   |
| Aluminum, total                              | 7429-90-5  | E420/VA    | 0.0030               | mg/L     | 0.0567            | 12                   |                    | ş — ş             | -                 |
| Antimony, total                              | 7440-36-0  | E420/VA    | 0.00010              | mg/L     | <0.00010          |                      |                    | · — :             | ( <del>)</del> () |
| Arsenic, total                               | 7440-38-2  | E420/VA    | 0.00010              | mg/L     | <0.00010          |                      | 0                  | 5.772.2           | ( <del></del> )   |
| Barium, total                                | 7440-39-3  | E420/VA    | 0.00010              | mg/L     | 0.00409           |                      |                    | 6777.0            | -                 |
| Beryllium, total                             | 7440-41-7  | E420/VA    | 0.000020             | mg/L     | <0.000020         | 1,777,1              |                    | 45772.4           | 1.77              |
| Bismuth, total                               | 7440-69-9  | E420/VA    | 0.000050             | mg/L     | <0.000050         | \$ <del>5778</del> 5 | : <del>555</del> 6 | 000               | 10775             |
| Boron, total                                 | 7440-42-8  | E420/VA    | 0.010                | mg/L     | <0.010            | 2 <u>-11</u> 2       | 8222               | 000               | 8 <u>02</u> 1     |
| Cadmium, total                               | 7440-43-9  | E420/VA    | 0.0000050            | mg/L     | 0.0000248         | * <u></u> 2          | 8222               | 7-2               | : <u></u> :       |
| Calcium, total                               | 7440-70-2  | E420/VA    | 0.050                | mg/L     | 5.20              | P.022                |                    | 2-3               |                   |
| Cesium, total                                | 7440-46-2  | E420/VA    | 0.000010             | mg/L     | <0.000010         |                      |                    | 2                 | -                 |

Work Order : VA24D1987 : Village of Lions Bay Client

Project



## Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |            | Client sa            | mple ID | Alberta Creek     | Harvey Creek         | Magnesia Creek      | \$ <del>707</del> 7 | <del></del>        |
|----------------------------------------------|------------|------------|----------------------|---------|-------------------|----------------------|---------------------|---------------------|--------------------|
|                                              |            |            | Client sampling date | /tlme   | 26-Nov-2024 00:00 | 26-Nov-2024 00:00    | 26-Nov-2024 00:00   |                     |                    |
| Analyte                                      | CAS Number | Method/Lab | LOR                  | Unit    | VA24D1987-001     | VA24D1987-002        | VA24D1987-003       | ( <del></del> )     |                    |
|                                              |            |            |                      |         | Result            | Result               | Result              | F-1127              |                    |
| Total Metals                                 |            |            |                      |         |                   |                      |                     |                     |                    |
| Chromium, total                              | 7440-47-3  | E420/VA    | 0.00050              | mg/L    | <0.00050          | 3                    | -                   | X <del>III.</del> X | -                  |
| Cobalt, total                                | 7440-48-4  | E420/VA    | 0.00010              | mg/L    | 0.00019           |                      |                     | 1                   |                    |
| Copper, total                                | 7440-50-8  | E420/VA    | 0.00050              | mg/L    | 0.00091           |                      | ( <del></del> )     | 1.                  |                    |
| ron, total                                   | 7439-89-8  | E420/VA    | 0.010                | mg/L    | <0.010            | ( <del></del> ;      | ( <del></del> )     | 1500                | 10000              |
| Lead, total                                  | 7439-92-1  | E420/VA    | 0.000050             | mg/L    | 0.000065          | 1.77                 | -                   | 6777.0              | 0.00               |
| Lithium, total                               | 7439-93-2  | E420/VA    | 0.0010               | mg/L    | <0.0010           | 5 <del>555</del> 5   | 1555                | 63350               | 1277               |
| Magnesium, total                             | 7439-95-4  | E420/VA    | 0.0050               | mg/L    | 0.800             | \$ <del>555</del> 8  | 1555                | 000                 |                    |
| Manganese, total                             | 7439-96-5  | E420/VA    | 0.00010              | mg/L    | 0.00311           | * <u>222</u> 2       |                     | ( <u>—</u> )        |                    |
| Mercury, total                               | 7439-97-6  | E508/VA    | 0.0000050            | mg/L    | <0.0000050        | 7                    |                     | ( <u>—</u> )        | 922                |
| Molybdenum, total                            | 7439-98-7  | E420/VA    | 0.000050             | mg/L    | 0.000262          |                      |                     | -                   | Ş                  |
| Nickel, total                                | 7440-02-0  | E420/VA    | 0.00050              | mg/L    | 0.00069           |                      |                     | 1,444               |                    |
| Phosphorus, total                            | 7723-14-0  | E420/VA    | 0.050                | mg/L    | <0.050            | -                    | -                   | Y <del></del> Y     |                    |
| otassium, total                              | 7440-09-7  | E420/VA    | 0.050                | mg/L    | 0.117             | -                    |                     |                     |                    |
| Rubidium, total                              | 7440-17-7  | E420/VA    | 0.00020              | mg/L    | <0.00020          |                      |                     | i <del></del> i     |                    |
| Selenium, total                              | 7782-49-2  | E420/VA    | 0.000050             | mg/L    | 0.000097          |                      |                     |                     |                    |
| Silicon, total                               | 7440-21-3  | E420/VA    | 0.10                 | mg/L    | 6.68              | ( <del></del> :      |                     | 2.77.2              | 1000               |
| Silver, total                                | 7440-22-4  | E420/VA    | 0.000010             | mg/L    | <0.000010         | 1.772                | 1000                | 43770.0             | 1-                 |
| odium, total                                 | 7440-23-5  | E420/VA    | 0.050                | mg/L    | 2.11              | s <del>555</del> 5   | 18 <del>515</del> 6 | 6 <del>3113</del> 2 | 3 <del>775</del> 1 |
| trontium, total                              | 7440-24-6  | E420/VA    | 0.00020              | mg/L    | 0.0186            | \$ <del>55.8</del> 5 | 25556               | 000                 |                    |
| ulfur, total                                 | 7704-34-9  | E420/VA    | 0.50                 | mg/L    | 3.60              | ÷ <u>111</u> 2       | 12                  | _                   |                    |
| ellurium, total                              | 13494-80-9 | E420/VA    | 0.00020              | mg/L    | <0.00020          | P.222                |                     | 3223                |                    |

Work Order : VA24D1987 : Village of Lions Bay Client

Project



#### **Analytical Results**

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |            | Client sa            | mple ID | Alberta Creek     | Harvey Creek        | Magnesia Creek     | 3.000 A           | 5000                |
|----------------------------------------------|------------|------------|----------------------|---------|-------------------|---------------------|--------------------|-------------------|---------------------|
|                                              | ,          |            | Client sampling date | / tlme  | 26-Nov-2024 00:00 | 26-Nov-2024 00:00   | 26-Nov-2024 00:00  |                   |                     |
| Analyte                                      | CAS Number | Method/Lab | LOR                  | Unit    | VA24D1987-001     | VA24D1987-002       | VA24D1987-003      |                   |                     |
|                                              |            |            |                      |         | Result            | Result              | Result             | 5122              | 2.22                |
| Total Metals                                 |            |            |                      |         |                   |                     |                    |                   |                     |
| Thallium, total                              | 7440-28-0  | E420/VA    | 0.000010             | mg/L    | <0.000010         | i i                 |                    | 7. <del></del> .7 | ·                   |
| Thorium, total                               | 7440-29-1  | E420/VA    | 0.00010              | mg/L    | <0.00010          | 12                  |                    | -                 |                     |
| Tin, total                                   | 7440-31-5  | E420/VA    | 0.00010              | mg/L    | <0.00010          | ( <del></del> :     |                    |                   | ( <del></del> )     |
| Titanium, total                              | 7440-32-8  | E420/VA    | 0.00030              | mg/L    | <0.00030          | ( <del></del> ()    | (                  | 5 <del></del> 2   | 1 <del>1</del>      |
| Tungsten, total                              | 7440-33-7  | E420/VA    | 0.00010              | mg/L    | <0.00010          | 1.77                |                    | 677760            | 10 <del>111</del> 1 |
| Uranium, total                               | 7440-61-1  | E420/VA    | 0.000010             | mg/L    | <0.000010         | s <del>.77.</del> 8 | u <del>zuz</del> . | 677720            |                     |
| Vanadium, total                              | 7440-62-2  | E420/VA    | 0.00050              | mg/L    | <0.00050          | \$500S              | 15755              |                   | 1                   |
| Zinc, total                                  | 7440-86-8  | E420/VA    | 0.0030               | mg/L    | 0.0030            | ÷ <u>211</u> 2      | 9 <u>011</u> 0     | 323               | 191                 |
| Zirconium, total                             | 7440-67-7  | E420/VA    | 0.00020              | mg/L    | <0.00020          | 7                   | _                  | 3223              | 944                 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Work Order : VA24D3735 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water)  |            |            | Client          | sample ID   | Alberta Creek     | [ <u>-</u> ]      | 7                  | 2                  |                  |
|---------------------------------------|------------|------------|-----------------|-------------|-------------------|-------------------|--------------------|--------------------|------------------|
|                                       |            | /          | Client sampling | date / time | 17-Dec-2024 11:35 | (1 <u>0.00</u> ): |                    |                    | <u> </u>         |
| Analyte                               | CAS Number | Method/Lab | LOR             | Unit        | VA24D3735-001     |                   | , <del></del>      |                    |                  |
|                                       |            |            |                 |             | Result            | 10                |                    | / <del></del> -    |                  |
| Physical Tests                        |            |            |                 |             |                   | 20                |                    |                    |                  |
| Alkalinity, total (as CaCO3)          | -          | E290/VA    | 1.0             | mg/L        | 11.4              | _                 |                    | -                  | S                |
| Conductivity                          | _          | E100/VA    | 2.0             | μS/cm       | 41.7              | 2-3               |                    | -                  | 922              |
| Hardness (as CaCO3), from total Ca/Mg |            | EC100A/VA  | 0.50            | mg/L        | 14.8              | 1-1               | -                  | 17 <del>-4</del> 1 | ; <del></del> :  |
| рН                                    |            | E108/VA    | 0.10            | pH units    | 7.24              | 1-1               |                    | 11                 |                  |
| Solids, total suspended [TSS]         |            | E160/VA    | 3.0             | mg/L        | <3.0              | 1 <del></del> 1   |                    | 1                  | ( )              |
| Turbidity                             |            | E121/VA    | 0.10            | NTU         | 0.41              | 1-1               |                    | . — :              |                  |
| Organic / Inorganic Carbon            |            |            |                 |             |                   |                   |                    |                    | i.e              |
| Carbon, total organic [TOC]           | _          | E355-L/VA  | 0.50            | mg/L        | 1.08              | 6,777,0           | ( <del>***</del> ) | 67775              | 2.000            |
| Total Metals                          |            |            |                 |             |                   |                   |                    |                    |                  |
| Aluminum, total                       | 7429-90-5  | E420/VA    | 0.0030          | mg/L        | 0.0296            | VV                |                    | 2                  | ·                |
| Antimony, total                       | 7440-36-0  | E420/VA    | 0.00010         | mg/L        | <0.00010          | 1-1               |                    | -                  |                  |
| Arsenic, total                        | 7440-38-2  | E420/VA    | 0.00010         | mg/L        | 0.00020           | 1 1               |                    | 19-41              |                  |
| Barium, total                         | 7440-39-3  | E420/VA    | 0.00010         | mg/L        | 0.00335           | 19-01             |                    | 7                  | (                |
| Beryllium, total                      | 7440-41-7  | E420/VA    | 0.000020        | mg/L        | <0.000020         | 7. <del></del> .7 | -                  | 1-1                | ( <del></del> (  |
| Bismuth, total                        | 7440-69-9  | E420/VA    | 0.000050        | mg/L        | <0.000050         | 5 <del></del> 5   |                    | ; <del></del> ;    | SS               |
| Boron, total                          | 7440-42-8  | E420/VA    | 0.010           | mg/L        | 0.012             | 5 <del></del> 2   | -                  | 3 <del></del> 2    | 2.556            |
| Cadmium, total                        | 7440-43-9  | E420/VA    | 0.0000050       | mg/L        | 0.0000173         | 2-2               |                    | 6777.0             | 2.555            |
| Calcium, total                        | 7440-70-2  | E420/VA    | 0.050           | mg/L        | 4.85              | e <del></del> e   |                    | 45000              | 2.77             |
| Cesium, total                         | 7440-46-2  | E420/VA    | 0.000010        | mg/L        | <0.000010         | 6 <del></del> 6   |                    | 6 <u>111</u> 0     | \$ <u>1234</u> 9 |
| Chromium, total                       | 7440-47-3  | E420/VA    | 0.00050         | mg/L        | <0.00050          |                   |                    | 3-25               | 1000             |
| Cobalt, total                         | 7440-48-4  | E420/VA    | 0.00010         | mg/L        | <0.00010          | 7_7               |                    | 3223               | 9                |

Work Order : VA24D3735 Client : Village of Lions Bay Project : ---



## Analytical Results

| Sub-Matrix: Water<br>(Matrix: Water) |            |            | Client          | sample ID   | Alberta Creek     | 655                  | C <del>imi</del> k | : <b>- 1</b>        |                    |
|--------------------------------------|------------|------------|-----------------|-------------|-------------------|----------------------|--------------------|---------------------|--------------------|
|                                      |            |            | Client sampling | date / time | 17-Dec-2024 11:35 |                      |                    |                     |                    |
| Analyte                              | CAS Number | Method/Lab | LOR             | Unit        | VA24D3735-001     | Nimit.               | 2                  |                     |                    |
|                                      |            |            |                 |             | Result            |                      |                    |                     |                    |
| Total Metals                         |            |            |                 |             |                   |                      |                    |                     |                    |
| Copper, total                        | 7440-50-8  | E420/VA    | 0.00050         | mg/L        | 0.00094           | 1 - 1 - 1            |                    | 7. <del></del> .7   | ·                  |
| Iron, total                          | 7439-89-6  | E420/VA    | 0.010           | mg/L        | 0.069             | 7                    | -                  | -                   |                    |
| Lead, total                          | 7439-92-1  | E420/VA    | 0.000050        | mg/L        | <0.000050         | 1-1                  |                    | -                   |                    |
| Lithium, total                       | 7439-93-2  | E420/VA    | 0.0010          | mg/L        | <0.0010           | 1-1                  |                    |                     |                    |
| Magnesium, total                     | 7439-95-4  | E420/VA    | 0.0050          | mg/L        | 0.659             | 5 <del>.71.</del> 2  | -                  | ( <del>111</del> 5) | 2                  |
| Manganese, total                     | 7439-96-5  | E420/VA    | 0.00010         | mg/L        | 0.00145           | 63752                | 8555               | ( <del>) 11</del> 0 | 2.555.4            |
| Mercury, total                       | 7439-97-8  | E508/VA    | 0.0000050       | mg/L        | <0.0000050        | 6.000                | 107773             | 000                 | 51 <u>22</u> 1     |
| Molybdenum, total                    | 7439-98-7  | E420/VA    | 0.000050        | mg/L        | 0.000291          | 6 <u>111</u> 9       | 8 <u>211</u> 2     | 1-2                 | 5 <u>122</u> 4     |
| Nickel, total                        | 7440-02-0  | E420/VA    | 0.00050         | mg/L        | <0.00050          | 7                    | 0                  | 7-5                 | S <u>1</u> 5       |
| Phosphorus, total                    | 7723-14-0  | E420/VA    | 0.050           | mg/L        | <0.050            | 7 <u></u> 7          | <u></u> -          | -                   |                    |
| Potassium, total                     | 7440-09-7  | E420/VA    | 0.050           | mg/L        | 0.117             | 1-1                  |                    | 1-1                 | 9-442              |
| Rubidium, total                      | 7440-17-7  | E420/VA    | 0.00020         | mg/L        | <0.00020          | 17 <del>111</del> 11 | -                  | 19                  |                    |
| Selenium, total                      | 7782-49-2  | E420/VA    | 0.000050        | mg/L        | 0.000072          | 1: <del></del> 1:    | -                  | 11                  |                    |
| Silicon, total                       | 7440-21-3  | E420/VA    | 0.10            | mg/L        | 5.98              | 7. <del></del> .7    | -                  | -                   | ( )                |
| Silver, total                        | 7440-22-4  | E420/VA    | 0.000010        | mg/L        | <0.000010         | 5 <del></del> 5      | -                  | . —                 |                    |
| Sodium, total                        | 7440-23-5  | E420/VA    | 0.050           | mg/L        | 1.75              | 1 1                  |                    | -                   |                    |
| Strontium, total                     | 7440-24-8  | E420/VA    | 0.00020         | mg/L        | 0.0144            | ( <del></del> ).     | 1000               | 67770               | 2 <del>111</del> 2 |
| Sulfur, total                        | 7704-34-9  | E420/VA    | 0.50            | mg/L        | 2.51              | 6 <del>111</del> 2   | 85556              | 67772               | 2.55               |
| Tellurium, total                     | 13494-80-9 | E420/VA    | 0.00020         | mg/L        | <0.00020          | 6 <del></del> 2      | 85556              | 000                 | 122                |
| Thallium, total                      | 7440-28-0  | E420/VA    | 0.000010        | mg/L        | <0.000010         | 9 <u>111</u> 9       | 1 <u></u> 1        | -                   | 5 <u>122</u> 4     |
| Thorium, total                       | 7440-29-1  | E420/VA    | 0.00010         | mg/L        | <0.00010          | 7                    | -                  | 3-3                 | S-1225             |

Work Order : VA24D3735 Client : Village of Lions Bay

Project : ----



#### **Analytical Results**

| Sub-Matrix: Water<br>(Matrix: Water) |            |            | Client          | sample ID   | Alberta Creek     | (577)             | 6778 | \$ <del>\</del> \    | 500   |
|--------------------------------------|------------|------------|-----------------|-------------|-------------------|-------------------|------|----------------------|-------|
| 2 22                                 |            |            | Client sampling | date / time | 17-Dec-2024 11:35 | (1 <del></del> )  | _    |                      |       |
| Analyte                              | CAS Number | Method/Lab | LOR             | Unit        | VA24D3735-001     |                   |      |                      |       |
| 100                                  |            |            |                 |             | Result            | (2.2)             |      |                      |       |
| Total Metals                         |            |            |                 |             |                   |                   |      |                      |       |
| Tin, total                           | 7440-31-5  | E420/VA    | 0.00010         | mg/L        | <0.00010          | 2                 |      | 11                   | (     |
| Titanium, total                      | 7440-32-6  | E420/VA    | 0.00030         | mg/L        | <0.00030          | 7 <del></del> .7  |      |                      |       |
| Tungsten, total                      | 7440-33-7  | E420/VA    | 0.00010         | mg/L        | <0.00010          |                   |      |                      | -     |
| Uranium, total                       | 7440-61-1  | E420/VA    | 0.000010        | mg/L        | <0.000010         | 1 1               | -    | S <del></del> 2      | -     |
| Vanadium, total                      | 7440-82-2  | E420/VA    | 0.00050         | mg/L        | <0.00050          | 2 <del>77</del> 2 | -    | 4. <del>777.</del> 2 |       |
| Zinc, total                          | 7440-86-8  | E420/VA    | 0.0030          | mg/L        | <0.0030           | 437729            | -    | 63777.0              | 2.00  |
| Zirconium, total                     | 7440-87-7  | E420/VA    | 0.00020         | mg/L        | <0.00020          | 47772             |      | 0.00                 | 5122  |
| Aggregate Organics                   |            |            |                 |             |                   |                   |      |                      |       |
| Biochemical oxygen demand [BOD]      | -          | E550/VA    | 2.0             | mg/L        | <2.0              | 7-1               |      | 11 <del>-11</del> 1  | 92228 |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Page: 5 of 5 alsglobal.com

## APPENDIX 7: HIKING SEASON CAFFEINE TESTS

 Page
 :
 2 of 2

 Work Order
 :
 VA24B8159

 Client
 :
 Village of Lions Bay

Project : ---



#### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

| Unit | Description          |  |
|------|----------------------|--|
| μg/L | micrograms per litre |  |

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

#### Analytical Results

| Sub-Matrix: Surface Water<br>(Matrix: Water) |            |            | Cli         | ient sample ID   | Harvey Creek      | Magnesia<br>Creek | Alberta Creek     | (1440)                   | <u> </u>                |
|----------------------------------------------|------------|------------|-------------|------------------|-------------------|-------------------|-------------------|--------------------------|-------------------------|
|                                              |            |            | Client samp | ling date / time | 24-Jul-2024 07:15 | 24-Jul-2024 08:00 | 24-Jul-2024 12:15 |                          |                         |
| Analyte                                      | CAS Number | Method/Lab | LOR         | Unit             | VA24B8159-001     | VA24B8159-002     | VA24B8159-003     | - 1 <del>311111</del> 31 | 1 <del>2777347</del> 15 |
|                                              |            |            | 1 1         |                  | Result            | Result            | Result            |                          | 3554                    |
| Pharmaceuticals & Personal Care Pr           | roducts    |            |             |                  |                   |                   |                   |                          |                         |
| Caffeine                                     | 58-08-2 E  | 729A/WT    | 0.0050      | μg/L             | <0.0050           | <0.0050           | <0.0050           | 1777                     |                         |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Page : 2 of 3

Work Order : VA24C2212 Amendment 1 Client : Village of Lions Bay

Project : ----



#### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key:

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

| Unit | Description          |  |
|------|----------------------|--|
| µg/L | micrograms per litre |  |

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

#### Workorder Comments

Amendment (24/09/2024): This report has been amended following minor LIMS report formatting corrections. All analysis results are as per the previous report.

#### Analytical Results

| Sub-Matrix: Surface Water (Matrix: Water) |            |            | Ci          | ent sample ID    | Harvey Creek         | Magnesia<br>Creek    | Alberta Creek        |                   | 2000       |
|-------------------------------------------|------------|------------|-------------|------------------|----------------------|----------------------|----------------------|-------------------|------------|
|                                           |            |            | Client samp | ling date / time | 28-Aug-2024<br>07:30 | 28-Aug-2024<br>08:10 | 28-Aug-2024<br>12:10 | 1 <del></del> -   |            |
| Analyte                                   | CAS Number | Method/Lab | LOR         | Unit             | VA24C2212-001        | VA24C2212-002        | VA24C2212-003        | (6)(6)(5)         | CONTROLL . |
|                                           |            |            |             | 1                | Result               | Result               | Result               | <del>177</del> 23 | 5755       |
| Pharmaceuticals & Personal Care           | Products   |            |             |                  |                      |                      |                      |                   |            |
| Caffeine                                  | 58-08-2 E  | 729A/WT    | 0.0050      | μg/L             | <0.0050              | <0.0050              | <0.0050              | 100               |            |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

alsglobal.com

## APPENDIX 8: ASBESTOS REPORT OF 25 NOV. 2024 (SAMPLES 19 NOV.)

TEM Report Page 1 of 2 11/25/2024



Contact: Thomas Chang Company: ALS Environmental Address: 8081 Lougheed Highway Burnaby BC Canada V5A 1W9

Project / Location: VA25D1402 PO Number: VA25D1402 ALS Work Order: CC2400880

NARRATIVE: Analysis performed on FEI Tecnai TEM equipped with EDAX Octane T Plus Silicon

Drift Detector and Z2 Analyzer. Fiber morphology, selected area electron diffraction (SAED), and energy dispersive x-ray analysis (EDXA) used to determine species. All sample collection is performed outside of ALS Cincinnati is therefore the sole responsibility of the client. Contact your local authority for information on method

selection, sampling instructions, and reporting requirements prior to submission.

NOTICE: All US EPA Public Water System (PWS) drinking water compliance samples must be filtered by the laboratory within 48 hours of sampling. ALS cannot report analytical results directly to the EPA unless all of the information required by the state EPA agency is provided via the COC at the time of receipt. Report revisions resulting from failure to provide this information via the COC will result in additional administrative fees. ALS is not responsible for late or inaccurate EPA reporting as a result of client sample collection errors or information omissions. Samples from outside the US are not subject to US EPA drinking water requirements and are therefore not required to meet the 48 hour hold time, the <0.20MFL RL, and results are not reported to any agency.

METHOD CODES: "EPA 100.2" refers only to US EPA compliance drinking waters analyzed at >10,000x for asbestos fibers >10µm long only. "ENV 005" refers to a modified version of EPA 100.2 developed for all other non-potable, non-compliance, and foreign waters also analyzed at >10,000x for asbestos fibers >10µm long only. "EPA 100.1" refers to any water analyzed for asbestos fibers of any size. All excess water is disposed immediately following adequate filtration. All filtered samples are disposed after 60 day archive. All TEM grids analyzed are archived for a minimum of 3 years. Results apply only to portions of samples analyzed.

SUMMARY: An AS of <0.2 MFL is desired for drinking (potable) waters, and an AS of <7 MFL is generally acceptable for non-potable waters. Whenever possible, a sufficient volume is analyzed to yield the desired AS based on the detection of 1 confirmed asbestos fiber in the total area analyzed. However, waters containing excessive solids may require filtration of volumes too low to achieve the desired AS. In any case, a minimum of 4 and maximum of 10 grid openings are analyzed regardless of the AS reached or the asbestos concentration detected. Representative EDXA spectra and/or photomicrographs are available upon request for an additional fee. NA=Not Applicable, AS=Analytical Sensitivity, MFL=Millions of Fibers per Liter, MRL=Method Reporting Limit

> ALS Cincinnati is certified by NY ELAP for TEM by EPA 600/R-94/134, Method 100.2, "Determination of Asbestos Structures Over 10µm in Length in Drinking Water" (NY ELAP Lab#11371).

OH State Lab No.: 4077, OH Analyst Nos.: 2268 (P. Hizar), 3431 (A. Sohn)

PA State Lab No.: 68-01320, PA Certification No.: 003

WA State Lab No.: 211 NY State Lab No.: 11371

Pamela M. Hisar

ALS Asbestos Technical Lead & Microscopy Department Manager

This report shall not be reproduced except in full without written approval of ALS. 4388 Glendale-Milford Road Cincinnati, Ohio 45242 Phone (513) 733-5336 Fax (513) 733-5347 www.alsglobal.com

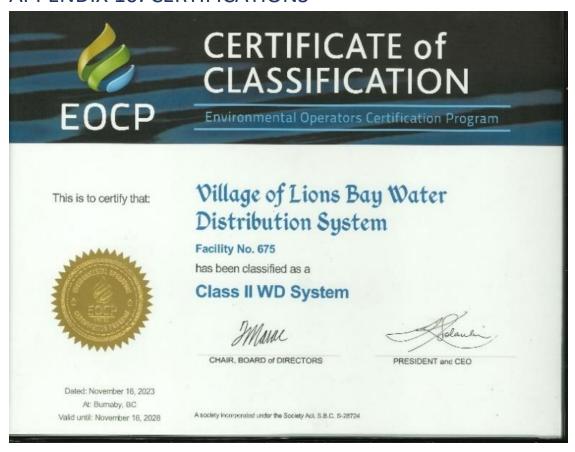
| IDENTIFICATION                 |                                                      |                            |  |
|--------------------------------|------------------------------------------------------|----------------------------|--|
| Client ID:                     | VA24D1402-001                                        | VA24D1402-002              |  |
| ALS ID:                        | CC2400880-001                                        | CC2400880-002              |  |
| Method:                        | ENV 005                                              | ENV 005                    |  |
| MRL:                           | <7MFL                                                | <7MFL                      |  |
| Collection:                    | 11/19/24 2:30 PM                                     | 11/19/24 2:50 PM           |  |
| Filtration:                    | 11/22/24 12:00 PM                                    | 11/22/24 12:00 PM          |  |
| Elapsed:                       | NA                                                   | NA                         |  |
|                                |                                                      |                            |  |
|                                | HIGH SUSPENDED                                       | HIGH SUSPENDED             |  |
| Comple Comments:               | SOLIDS CONTENT                                       | SOLIDS CONTENT             |  |
| Sample Comments:<br>ANALYSIS   |                                                      |                            |  |
| Analyst:                       | Pamela Hizar                                         | Pamela Hizar               |  |
| Completed:                     | 11/25/24 9:15 AM                                     | 11/25/24 9:45 AM           |  |
| Volume (L):                    | 0.05                                                 | 0.05                       |  |
|                                |                                                      |                            |  |
| Open Area (mm²):               | 0.0102                                               | 0.0102                     |  |
| No. Open Analyzed:             | 10                                                   | 10                         |  |
| Total Area (mm <sup>2</sup> ): | 0.102                                                | 0.102                      |  |
| AS (MFL):                      | 0.21                                                 | 0.21                       |  |
| ASBESTOS <10µm CO              |                                                      |                            |  |
| Chrysotile <10µm:              | NA                                                   | NA                         |  |
| Amosite <10µm:                 | NA                                                   | NA                         |  |
| Crocidolite <10µm:             | NA                                                   | NA                         |  |
| Actinolite <10µm:              | NA                                                   | NA                         |  |
| Tremolite <10µm:               | NA                                                   | NA                         |  |
| Anthophyllite <10µm:           | NA                                                   | NA                         |  |
| Total <10µm:                   | NA                                                   | NA NA                      |  |
| ASBESTOS >10µm CO              |                                                      |                            |  |
| Chrysotile >10µm:              | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Amosite >10µm:                 | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Crocidolite >10µm:             | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Actinolite >10µm:              | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Tremolite >10µm:               | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Anthophyllite >10µm:           | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total >10µm:                   | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| TOTAL ASBESTOS C               |                                                      |                            |  |
| Total Chrysotile:              | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Amosite:                 | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Crocidolite:             | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Actinolite:              | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Tremolite:               | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Anthophyllite:           | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Total Asbestos:                | <as< td=""><td><as< td=""><td></td></as<></td></as<> | <as< td=""><td></td></as<> |  |
| Analysis Comments:             | NONE                                                 | NONE                       |  |
|                                |                                                      |                            |  |

This report shall not be reproduced except in full without written approval of ALS.
4388 Glendale-Milford Road Cincinnati, Ohio 45242
Phone (513) 733-5336 Fax (513) 733-5347 www.alsglobal.com

# APPENDIX 9: DAILY AVERAGE TURBIDITY, 15 SEC. METER READINGS

|                  | HA                  | ARVEY CREEK                | MAG                                     | NESIA CREEK                |  |  |
|------------------|---------------------|----------------------------|-----------------------------------------|----------------------------|--|--|
|                  | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY ROLLING 2-DAY AVERAGE |                            |  |  |
| DATE             | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S                     | TURBIDITY (>5 HIGHLIGHTED) |  |  |
| 01-Jan           | 0.07                |                            | 8.26                                    |                            |  |  |
| 02-Jan           | 0.07                | 0.07                       | 3.19                                    | 5.72                       |  |  |
| 03-Jan           | 0.06                | 0.07                       | 0.13                                    | 1.66                       |  |  |
| 04-Jan           | 0.07                | 0.07                       | 0.14                                    | 0.14                       |  |  |
| 05-Jan           | 0.06                | 0.07                       | 0.12                                    | 0.13                       |  |  |
| 06-Jan           | 0.06                | 0.06                       | 0.12                                    | 0.12                       |  |  |
| 07-Jan           | 0.05                | 0.05                       | 0.11                                    | 0.11                       |  |  |
| 08-Jan           | 0.05                | 0.05                       | 0.11                                    | 0.11                       |  |  |
| 09-Jan           | 0.06                | 0.06                       | 0.17                                    | 0.14                       |  |  |
| 11-Jan           | 0.05                | 0.06                       | 0.09                                    | 0.13                       |  |  |
| 12-Jan           | 0.12                | 0.08                       | 0.36                                    | 0.23                       |  |  |
| 13-Jan           | 0.04                | 0.08                       | 0.13                                    | 0.25                       |  |  |
| 14-Jan           | 0.04                | 0.04                       | 0.14                                    | 0.14                       |  |  |
| 15-Jan           | 0.09                | 0.07                       | 0.09                                    | 0.12                       |  |  |
| 16-Jan           | 0.07                | 0.08                       | 0.08                                    | 0.09                       |  |  |
| 17-Jan           | 0.04                | 0.06                       | 0.08                                    | 0.08                       |  |  |
| 18-Jan           | 0.35                | 0.20                       | 0.07                                    | 0.08                       |  |  |
| 19-Jan           | 0.17                | 0.26                       | 0.17                                    | 0.12                       |  |  |
| 20-Jan           | 0.11                | 0.14                       | 0.14                                    | 0.15                       |  |  |
| 21-Jan           | 0.24                | 0.17                       | 0.12                                    | 0.13                       |  |  |
| 22-Jan           | 0.25                | 0.25                       | 0.30                                    | 0.21                       |  |  |
| 23-Jan           | 0.12                | 0.19                       | 0.25                                    | 0.27                       |  |  |
| 24-Jan           | 0.10                | 0.11                       | 0.19                                    | 0.22                       |  |  |
| 25-Jan           | 0.15                | 0.13                       | 0.26                                    | 0.22                       |  |  |
| 26-Jan           | 0.08                | 0.11                       | 0.15                                    | 0.21                       |  |  |
| 27-Jan           | 0.41                | 0.25                       | 1.21                                    | 0.68                       |  |  |
| 28-Jan           | 0.46                | 0.44                       | 2.48                                    | 1.84                       |  |  |
| 29-Jan           | 0.75                | 0.61                       | 1.32                                    | 1.90                       |  |  |
| 30-Jan           | 0.14                | 0.45                       | 0.94                                    | 1.13                       |  |  |
| 31-Jan           | 0.21                | 0.18                       | 1.23                                    | 1.09                       |  |  |
| 01-Feb           | 0.16                | 0.19                       | 7.86                                    | 4.55                       |  |  |
| 02-Feb           | 0.12                | 0.14                       | 4.87                                    | 6.37                       |  |  |
| 03-Feb           | 0.09                | 0.11                       | 0.49                                    | 2.68                       |  |  |
| 04-Feb           | 0.08                | 0.09                       | 0.32                                    | 0.41                       |  |  |
| 05-Feb           | 0.06                | 0.07                       | 0.24                                    | 0.28                       |  |  |
| 06-Feb           | 0.07                | 0.07                       | 0.20                                    | 0.22                       |  |  |
| 07-Feb           | 0.05                | 0.06                       | 0.17                                    | 0.19                       |  |  |
| 08-Feb           | 0.05                | 0.05                       | 0.15                                    | 0.16                       |  |  |
| 09-Feb           | 0.04                | 0.05                       | 0.14                                    | 0.15                       |  |  |
| 10-Feb           | 0.04                | 0.04                       | 0.13                                    | 0.14                       |  |  |
| 11-Feb           | 0.06                | 0.05                       | 0.15                                    | 0.14                       |  |  |
| 12-Feb           | 0.06                | 0.06                       | 0.12                                    | 0.14                       |  |  |
| 13-Feb           | 0.05                | 0.05                       | 0.11                                    | 0.12                       |  |  |
| 14-Feb           | 0.04                | 0.04                       | 0.11                                    | 0.11                       |  |  |
| 15-Feb           | 0.04                | 0.04                       | 0.11                                    | 0.11                       |  |  |
| 16-Feb           | 0.04                | 0.04                       | 0.10                                    | 0.11                       |  |  |
| 17-Feb           | 0.04                | 0.04                       | 0.10                                    | 0.10                       |  |  |
| 18-Feb           | 0.04                | 0.04                       | 0.09                                    | 0.10                       |  |  |
| 19-Feb           | 0.04                | 0.04                       | 0.09                                    | 0.09                       |  |  |
| 20-Feb           | 0.04                | 0.04                       | 0.10                                    | 0.10                       |  |  |
| 21-Feb           | 0.05                | 0.05                       | 0.10                                    | 0.10                       |  |  |
| 22-Feb           | 0.06                | 0.06                       | 0.11                                    | 0.10                       |  |  |
| 23-Feb           | 0.05                | 0.05                       | 0.10                                    | 0.10                       |  |  |
|                  | T                   | 0.04                       | 0.10                                    | 0.10                       |  |  |
| 24-Feb           | 0.04                | 0.04                       |                                         |                            |  |  |
| 24-Feb<br>25-Feb | 0.04                | 0.05                       | 0.12                                    | 0.11                       |  |  |
|                  |                     |                            |                                         |                            |  |  |

|        | HA                  | ARVEY CREEK                | MAGNESIA CREEK      |                            |  |  |
|--------|---------------------|----------------------------|---------------------|----------------------------|--|--|
|        | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      |  |  |
| DATE   | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) |  |  |
| 28-Feb | 0.05                | 0.05                       | 0.13                | 0.10                       |  |  |
| 29-Feb | 0.05                | 0.05                       | 0.10                | 0.11                       |  |  |
| 01-Mar | 0.05                | 0.05                       | 0.10                | 0.10                       |  |  |
| 02-Mar | 0.04                | 0.05                       | 0.10                | 0.10                       |  |  |
| 03-Mar | 0.06                | 0.05                       | 0.10                | 0.10                       |  |  |
| 04-Mar | 0.05                | 0.05                       | 0.10                | 0.10                       |  |  |
| 05-Mar | 0.03                | 0.04                       | 0.12                | 0.11                       |  |  |
| 06-Mar | 0.03                | 0.03                       | 0.07                | 0.10                       |  |  |
| 07-Mar | 0.03                | 0.03                       | 0.07                | 0.07                       |  |  |
| 08-Mar | 0.04                | 0.04                       | 0.10                | 0.08                       |  |  |
| 09-Mar | 0.09                | 0.07                       | 0.15                | 0.12                       |  |  |
| 11-Mar | 0.08                | 0.08                       | 1.28                | 0.72                       |  |  |
| 12-Mar | 0.11                | 0.10                       | 6.08                | 3.68                       |  |  |
| 13-Mar | 0.05                | 0.08                       | 0.81                | 3.45                       |  |  |
| 14-Mar | 0.04                | 0.04                       | 0.49                | 0.65                       |  |  |
| 15-Mar | 0.05                | 0.05                       | 0.68                | 0.59                       |  |  |
| 16-Mar | 0.09                | 0.07                       | 0.65                | 0.66                       |  |  |
| 17-Mar | 0.09                | 0.09                       | 0.33                | 0.49                       |  |  |
| 18-Mar | 0.07                | 0.08                       | 0.21                | 0.27                       |  |  |
| 19-Mar | 0.06                | 0.07                       | 0.18                | 0.20                       |  |  |
| 20-Mar | 0.06                | 0.06                       | 0.15                | 0.17                       |  |  |
| 21-Mar | 0.05                | 0.06                       | 0.14                | 0.15                       |  |  |
| 22-Mar | 0.05                | 0.05                       | 0.15                | 0.14                       |  |  |
| 23-Mar | 0.05                | 0.05                       | 0.14                | 0.14                       |  |  |
| 24-Mar | 0.05                | 0.05                       | 0.12                | 0.13                       |  |  |
| 25-Mar | 0.05                | 0.05                       | 0.12                | 0.12                       |  |  |
| 26-Mar | 0.05                | 0.05                       | 0.11                | 0.11                       |  |  |
| 27-Mar | 0.06                | 0.05                       | 0.15                | 0.13                       |  |  |
| 28-Mar | 0.06                | 0.06                       | 0.29                | 0.22                       |  |  |
| 29-Mar | 0.07                | 0.06                       | 0.22                | 0.25                       |  |  |
| 30-Mar | 0.05                | 0.06                       | 0.13                | 0.17                       |  |  |
| 31-Mar | 0.05                | 0.05                       | 0.12                | 0.12                       |  |  |
| 01-Apr | 0.05                | 0.05                       | 0.11                | 0.11                       |  |  |
| 02-Apr | 0.08                | 0.06                       | 0.12                | 0.12                       |  |  |
| 03-Apr | 0.07                | 0.07                       | 0.16                | 0.14                       |  |  |
| 04-Apr | 0.05                | 0.06                       | 0.10                | 0.13                       |  |  |
| 05-Apr | 0.04                | 0.05                       | 0.10                | 0.10                       |  |  |
| 06-Apr | 0.04                | 0.04                       | 0.09                | 0.10                       |  |  |
| 07-Apr | 0.04                | 0.04                       | 0.10                | 0.10                       |  |  |
| 08-Apr | 0.05                | 0.04                       | 0.10                | 0.10                       |  |  |
| 09-Apr | 0.05                | 0.05                       | 0.06                | 0.08                       |  |  |
| 10-Apr | 0.00                | 0.03                       | 0.01                | 0.03                       |  |  |
| 11-Apr | 0.05                | 0.03                       | 0.09                | 0.05                       |  |  |
| 12-Apr | 0.04                | 0.05                       | 0.10                | 0.10                       |  |  |
| 13-Apr | 0.04                | 0.04                       | 0.09                | 0.10                       |  |  |
| 14-Apr | 0.04                | 0.04                       | 0.09                | 0.09                       |  |  |
| 15-Apr | 0.04                | 0.04                       | 0.08                | 0.09                       |  |  |
| 16-Apr | 0.04                | 0.04                       | 0.08                | 0.08                       |  |  |
| 17-Apr | 0.06                | 0.05                       | 0.08                | 0.08                       |  |  |
| 18-Apr | 0.04                | 0.05                       | 0.07                | 0.07                       |  |  |
| 19-Apr | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 20-Apr | 0.05                | 0.05                       | 0.07                | 0.07                       |  |  |
| 21-Apr | 0.05                | 0.05                       | 0.07                | 0.07                       |  |  |
| 22-Apr | 0.04                | 0.05                       | 0.07                | 0.07                       |  |  |
| 23-Apr | 0.05                | 0.05                       | 0.07                | 0.07                       |  |  |
| 24-Apr | 0.06                | 0.05                       | 0.08                | 0.08                       |  |  |
| 25-Apr | 0.08                | 0.07                       | 0.12                | 0.10                       |  |  |
| 26-Apr | 0.07                | 0.08                       | 0.12                | 0.12                       |  |  |
| 27-Apr | 0.14                | 0.11                       | 0.19                | 0.16                       |  |  |
|        | 0.09                | 0.12                       | 0.13                | 0.16                       |  |  |
| 28-Apr | 0.09                |                            |                     |                            |  |  |


|        | HA                  | ARVEY CREEK                | MAGNESIA CREEK      |                            |  |  |
|--------|---------------------|----------------------------|---------------------|----------------------------|--|--|
|        | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      |  |  |
| DATE   | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) |  |  |
| 30-Apr | 0.05                | 0.05                       | 0.08                | 0.08                       |  |  |
| 01-May | 0.05                | 0.05                       | 0.07                | 0.07                       |  |  |
| 07-May | 0.06                | 0.05                       | 0.11                | 0.09                       |  |  |
| 09-May | 0.06                | 0.06                       | 0.09                | 0.10                       |  |  |
| 10-May | 0.09                | 0.07                       | 0.15                | 0.12                       |  |  |
| 11-May | 0.09                | 0.09                       | 0.25                | 0.20                       |  |  |
| 12-May | 0.08                | 0.08                       | 0.26                | 0.25                       |  |  |
| 13-May | 0.07                | 0.07                       | 0.16                | 0.21                       |  |  |
| 14-May | 0.06                | 0.06                       | 0.14                | 0.15                       |  |  |
| 15-May | 0.06                | 0.06                       | 0.13                | 0.14                       |  |  |
| 16-May | 0.07                | 0.07                       | 0.20                | 0.17                       |  |  |
| 17-May | 0.06                | 0.07                       | 0.13                | 0.17                       |  |  |
| 18-May | 0.07                | 0.07                       | 0.13                | 0.13                       |  |  |
| 19-May | 0.06                | 0.07                       | 0.14                | 0.14                       |  |  |
| 20-May | 0.06                | 0.06                       | 0.10                | 0.12                       |  |  |
| 21-May | 0.09                | 0.07                       | 0.11                | 0.10                       |  |  |
| 22-May | 0.12                | 0.10                       | 0.25                | 0.18                       |  |  |
| 23-May | 0.06                | 0.09                       | 0.13                | 0.19                       |  |  |
| 24-May | 0.06                | 0.06                       | 0.12                | 0.12                       |  |  |
| 25-May | 0.06                | 0.06                       | 0.12                | 0.12                       |  |  |
| 26-May | 0.06                | 0.06                       | 0.11                | 0.11                       |  |  |
| 27-May | 0.06                | 0.06                       | 0.11                | 0.11                       |  |  |
| 28-May | 0.08                | 0.07                       | 0.21                | 0.16                       |  |  |
| 29-May | 0.06                | 0.07                       | 0.19                | 0.20                       |  |  |
| 31-May | 0.05                | 0.06                       | 0.10                | 0.15                       |  |  |
| 01-Jun | 0.06                | 0.05                       | 0.11                | 0.11                       |  |  |
| 02-Jun | 0.09                | 0.07                       | 0.28                | 0.20                       |  |  |
| 03-Jun | 0.22                | 0.15                       | 1.39                | 0.84                       |  |  |
| 04-Jun | 0.13                | 0.18                       | 7.99                | 4.69                       |  |  |
| 05-Jun | 0.09                | 0.11                       | 4.44                | 6.21                       |  |  |
| 06-Jun | 0.07                | 0.08                       | 0.22                | 2.33                       |  |  |
| 07-Jun | 0.07                | 0.07                       | 0.17                | 0.19                       |  |  |
| 08-Jun | 0.07                | 0.07                       | 0.18                | 0.18                       |  |  |
| 09-Jun | 0.07                | 0.07                       | 0.20                | 0.19                       |  |  |
| 10-Jun | 0.07                | 0.07                       | 0.20                | 0.20                       |  |  |
| 11-Jun | 0.07                | 0.07                       | 0.18                | 0.19                       |  |  |
| 12-Jun | 0.06                | 0.06                       | 0.14                | 0.16                       |  |  |
| 13-Jun | 0.10                | 0.08                       | 0.14                | 0.14                       |  |  |
| 14-Jun | 0.06                | 0.08                       | 0.13                | 0.13                       |  |  |
| 15-Jun | 0.06                | 0.06                       | 0.12                | 0.12                       |  |  |
| 16-Jun | 0.06                | 0.06                       | 0.12                | 0.12                       |  |  |
| 17-Jun | 0.06                | 0.06                       | 0.10                | 0.11                       |  |  |
| 18-Jun | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 19-Jun | 0.07                | 0.06                       | 0.11                | 0.11                       |  |  |
| 20-Jun | 0.07                | 0.07                       | 0.13                | 0.12                       |  |  |
| 21-Jun | 0.06                | 0.07                       | 0.13                | 0.13                       |  |  |
| 22-Jun | 0.06                | 0.06                       | 0.13                | 0.13                       |  |  |
| 23-Jun | 0.06                | 0.06                       | 0.11                | 0.12                       |  |  |
| 24-Jun | 0.06                | 0.06                       | 0.10                | 0.11                       |  |  |
| 25-Jun | 0.06                | 0.06                       | 0.11                | 0.10                       |  |  |
| 26-Jun | 0.06                | 0.06                       | 0.12                | 0.11                       |  |  |
| 27-Jun | 0.07                | 0.07                       | 0.15                | 0.13                       |  |  |
| 28-Jun | 0.06                | 0.06                       | 0.12                | 0.14                       |  |  |
| 29-Jun | 0.06                | 0.06                       | 0.10                | 0.11                       |  |  |
| 30-Jun | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 01-Jul | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 02-Jul | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 03-Jul | 0.05                | 0.06                       | 0.10                | 0.10                       |  |  |
| 04-Jul | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 05-Jul | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 06-Jul | 0.06                | 0.06                       | 0.21                | 0.15                       |  |  |

|                  | HA                  | ARVEY CREEK                | MAGNESIA CREEK      |                            |  |  |
|------------------|---------------------|----------------------------|---------------------|----------------------------|--|--|
| Ē                | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      |  |  |
| DATE             | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) |  |  |
| 07-Jul           | 0.06                | 0.06                       | 0.10                | 0.15                       |  |  |
| 08-Jul           | 0.06                | 0.06                       | 0.10                | 0.10                       |  |  |
| 09-Jul           | 0.06                | 0.06                       | 0.09                | 0.10                       |  |  |
| 10-Jul           | 0.05                | 0.06                       | 0.09                | 0.09                       |  |  |
| 11-Jul           | 0.05                | 0.05                       | 0.09                | 0.09                       |  |  |
| 12-Jul           | 0.05                | 0.05                       | 0.09                | 0.09                       |  |  |
| 13-Jul           | 0.05                | 0.05                       | 0.08                | 0.09                       |  |  |
| 14-Jul           | 0.05                | 0.05                       | 0.08                | 0.08                       |  |  |
| 15-Jul           | 0.05                | 0.05                       | 0.08                | 0.08                       |  |  |
| 16-Jul           | 0.04                | 0.05                       | 0.08                | 0.08                       |  |  |
| 17-Jul           | 0.05                | 0.05                       | 0.08                | 0.08                       |  |  |
| 18-Jul           | 0.04                | 0.04                       | 0.08                | 0.08                       |  |  |
| 19-Jul           | 0.04                | 0.04                       | 0.08                | 0.08                       |  |  |
| 20-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 21-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 22-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 23-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 24-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 25-Jul           | 0.04                | 0.04                       | 0.07                | 0.07                       |  |  |
| 26-Jul           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 27-Jul           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 28-Jul           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 29-Jul           | 0.05                | 0.04                       | 0.08                | 0.07                       |  |  |
| 30-Jul           | 0.05                | 0.05                       | 0.07                | 0.08                       |  |  |
| 31-Jul           | 0.05                | 0.05                       | 0.06                | 0.07                       |  |  |
| 01-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 02-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 03-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 04-Aug           | 0.05                | 0.05                       | 0.06                | 0.06                       |  |  |
| 05-Aug           | 0.04                | 0.05                       | 0.06                | 0.06                       |  |  |
| 06-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 07-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 08-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 09-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 10-Aug<br>11-Aug | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 12-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 13-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 14-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 15-Aug           | 0.10                | 0.07                       | 0.41                | 0.23                       |  |  |
| 16-Aug           | 0.04                | 0.07                       | 0.06                | 0.23                       |  |  |
| 17-Aug           | 0.04                | 0.04                       | 0.06                | 0.06                       |  |  |
| 18-Aug           | 0.04                | 0.04                       | 0.07                | 0.06                       |  |  |
| 19-Aug           | 0.03                | 0.04                       | 0.05                | 0.06                       |  |  |
| 20-Aug           | 0.05                | 0.04                       | 0.05                | 0.05                       |  |  |
| 21-Aug           | 0.04                | 0.05                       | 0.05                | 0.05                       |  |  |
| 22-Aug           | 0.05                | 0.05                       | 0.09                | 0.07                       |  |  |
| 23-Aug           | 0.06                | 0.06                       | 0.06                | 0.08                       |  |  |
| 24-Aug           | 0.19                | 0.13                       | 0.23                | 0.14                       |  |  |
| 25-Aug           | 0.04                | 0.12                       | 0.07                | 0.15                       |  |  |
| 26-Aug           | 0.06                | 0.05                       | 0.06                | 0.06                       |  |  |
| 27-Aug           | 0.07                | 0.07                       | 0.09                | 0.07                       |  |  |
| 28-Aug           | 0.04                | 0.06                       | 0.06                | 0.07                       |  |  |
| 29-Aug           | 0.06                | 0.05                       | 0.05                | 0.05                       |  |  |
| 30-Aug           | 1.12                | 0.59                       | 0.06                | 0.05                       |  |  |
| 31-Aug           | 0.25                | 0.68                       | 0.05                | 0.05                       |  |  |
| 01-Sep           | 0.21                | 0.23                       | 0.05                | 0.05                       |  |  |
| 02-Sep           | 0.19                | 0.20                       | 0.05                | 0.05                       |  |  |
|                  |                     |                            | 1                   | <u> </u>                   |  |  |
| 04-Sep           | 0.14                | 0.16                       | 0.05                | 0.05                       |  |  |
|                  |                     | 0.16<br>0.09               | 0.05<br>0.06        | 0.05                       |  |  |

|                  | HA                  | ARVEY CREEK                | MAGNESIA CREEK      |                            |  |  |
|------------------|---------------------|----------------------------|---------------------|----------------------------|--|--|
|                  | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      |  |  |
| DATE             | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) |  |  |
| 07-Sep           | 0.04                | 0.03                       | 0.05                | 0.05                       |  |  |
| 08-Sep           | 0.03                | 0.03                       | 0.06                | 0.05                       |  |  |
| 09-Sep           | 0.03                | 0.03                       | 0.07                | 0.06                       |  |  |
| 10-Sep           | 0.03                | 0.03                       | 0.05                | 0.06                       |  |  |
| 11-Sep           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 12-Sep           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 13-Sep           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 14-Sep           | 2.40                | 1.22                       | 0.07                | 0.06                       |  |  |
| 15-Sep           | 0.06                | 1.23                       | 0.05                | 0.06                       |  |  |
| 16-Sep           | 0.14                | 0.10                       | 0.05                | 0.05                       |  |  |
| 17-Sep           | 0.18                | 0.16                       | 0.05                | 0.05                       |  |  |
| 18-Sep           | 0.06                | 0.12                       | 0.05                | 0.05                       |  |  |
| 19-Sep           | 0.04                | 0.05                       | 0.05                | 0.05                       |  |  |
| 20-Sep           | 0.03                | 0.03                       | 0.04                | 0.04                       |  |  |
| 21-Sep           | 0.03                | 0.03                       | 0.05                | 0.04                       |  |  |
| 22-Sep           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 23-Sep           | 0.03                | 0.03                       | 0.06                | 0.05                       |  |  |
| 24-Sep           | 0.03                |                            | 0.05                |                            |  |  |
| 25-Sep<br>26-Sep | 0.11<br>0.06        | 0.07                       | 0.22                | 0.13                       |  |  |
| 26-Sep<br>27-Sep | 0.06                | 0.08                       | 0.09                | 0.15                       |  |  |
| 27-Sep<br>28-Sep | 0.03                | 0.05                       | 0.06                | 0.06                       |  |  |
| 29-Sep           | 0.04                | 0.04                       | 0.05                | 0.06                       |  |  |
| 30-Sep           | 0.03                | 0.03                       | 0.04                | 0.05                       |  |  |
| 01-Oct           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 02-Oct           | 0.03                | 0.03                       | 0.04                | 0.05                       |  |  |
| 03-Oct           | 0.03                | 0.03                       | 0.04                | 0.04                       |  |  |
| 04-Oct           | 0.13                | 0.08                       | 0.11                | 0.08                       |  |  |
| 05-Oct           | 0.05                | 0.09                       | 0.05                | 0.08                       |  |  |
| 06-Oct           | 0.04                | 0.04                       | 0.05                | 0.05                       |  |  |
| 07-Oct           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 08-Oct           | 0.03                | 0.03                       | 0.05                | 0.05                       |  |  |
| 09-Oct           | 0.04                | 0.04                       | 0.05                | 0.05                       |  |  |
| 10-Oct           | 0.04                | 0.04                       | 0.08                | 0.06                       |  |  |
| 11-Oct           | 0.03                | 0.04                       | 0.05                | 0.06                       |  |  |
| 12-Oct           | 0.03                | 0.03                       | 0.04                | 0.05                       |  |  |
| 13-Oct           | 0.03                | 0.03                       | 0.04                | 0.04                       |  |  |
| 14-Oct           | 0.11                | 0.07                       | 0.08                | 0.06                       |  |  |
| 15-Oct           | 0.08                | 0.09                       | 0.06                | 0.07                       |  |  |
| 16-Oct           | 0.05                | 0.06                       | 0.13                | 0.10                       |  |  |
| 17-Oct           | 0.05                | 0.05                       | 0.10                | 0.11                       |  |  |
| 18-Oct           | 0.26                | 0.16                       | 0.08                | 0.09                       |  |  |
| 19-Oct           | 0.97                | 0.62                       | 1.97                | 1.02                       |  |  |
| 20-Oct           | 0.23                | 0.60                       | 1.18                | 1.57                       |  |  |
| 21-Oct           | 0.13                | 0.18                       | 0.88                | 1.03                       |  |  |
| 22-Oct           | 0.08                | 0.10                       | 0.18                | 0.53                       |  |  |
| 23-Oct           | 0.06                | 0.07                       | 0.12                | 0.15                       |  |  |
| 24-Oct           | 0.42                | 0.24                       | 0.10                | 0.11                       |  |  |
| 25-Oct           | 0.35                | 0.39                       | 0.08                | 0.09                       |  |  |
| 26-Oct           | 0.47                | 0.41                       | 0.17                | 0.12                       |  |  |
| 27-Oct           | 0.46                | 0.46                       | 0.24                | 0.20                       |  |  |
| 28-Oct           | 0.44                | 0.45                       | 0.11                | 0.18                       |  |  |
| 29-Oct           | 0.48                | 0.46                       | 0.09                | 0.10                       |  |  |
| 30-Oct           | 0.38                | 0.43                       | 0.11                | 0.10                       |  |  |
| 31-Oct           | 0.38                | 0.38                       | 0.09                | 0.10                       |  |  |
| 01-Nov           | 0.20                | 0.29                       | 0.08                | 0.08                       |  |  |
| 02-Nov           | 0.27                | 0.23                       | 0.07                | 0.08                       |  |  |
| 03-Nov           | 0.27                | 0.27                       | 0.07                | 0.07                       |  |  |
| 04-Nov           | 0.35                | 0.31                       | 0.43                | 0.25                       |  |  |
| 05-Nov           | 0.09                | 0.22                       | 0.10                | 0.27                       |  |  |
| 06-Nov           | 0.29                | 0.19                       | 0.07                | 0.09                       |  |  |

|        | HARVEY CREEK        |                            | MAGNESIA CREEK      |                            |
|--------|---------------------|----------------------------|---------------------|----------------------------|
|        | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      | AVERAGE TURBIDITY   | ROLLING 2-DAY AVERAGE      |
| DATE   | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) | MEASURED EVERY 15 S | TURBIDITY (>5 HIGHLIGHTED) |
| 07-Nov | 0.26                | 0.27                       | 0.09                | 0.08                       |
| 08-Nov | 0.29                | 0.27                       | 0.12                | 0.11                       |
| 09-Nov | 0.33                | 0.31                       | 0.27                | 0.20                       |
| 10-Nov | 0.28                | 0.30                       | 0.18                | 0.23                       |
| 11-Nov | 0.88                | 0.58                       | 8.40                | 4.29                       |
| 12-Nov | 0.17                | 0.52                       | 4.17                | 6.28                       |
| 13-Nov | 0.70                | 0.44                       | 0.61                | 2.39                       |
| 14-Nov | 0.17                | 0.44                       | 1.09                | 0.85                       |
| 15-Nov | 0.10                | 0.14                       | 0.28                | 0.68                       |
| 16-Nov | 0.08                | 0.09                       | 0.17                | 0.22                       |
| 17-Nov | 0.07                | 0.08                       | 0.14                | 0.16                       |
| 18-Nov | 0.06                | 0.07                       | 0.11                | 0.13                       |
| 19-Nov | 0.11                | 0.08                       | 0.11                | 0.11                       |
| 20-Nov | 0.11                | 0.11                       | 0.15                | 0.13                       |
| 21-Nov | 0.07                | 0.09                       | 0.10                | 0.13                       |
| 22-Nov | 0.07                | 0.07                       | 0.12                | 0.11                       |
| 23-Nov | 0.09                | 0.08                       | 0.15                | 0.13                       |
| 24-Nov | 0.06                | 0.07                       | 0.10                | 0.12                       |
| 25-Nov | 0.05                | 0.05                       | 0.09                | 0.09                       |
| 26-Nov | 0.05                | 0.05                       | 0.08                | 0.08                       |
| 27-Nov | 0.04                | 0.05                       | 0.08                | 0.08                       |
| 28-Nov | 0.08                | 0.06                       | 0.08                | 0.08                       |
| 29-Nov | 0.05                | 0.06                       | 0.07                | 0.07                       |
| 30-Nov | 0.04                | 0.05                       | 0.07                | 0.07                       |
| 01-Dec | 0.04                | 0.04                       | 0.07                | 0.07                       |
| 02-Dec | 0.04                | 0.04                       | 0.07                | 0.07                       |
| 03-Dec | 0.04                | 0.04                       | 0.07                | 0.07                       |
| 04-Dec | 0.06                | 0.05                       | 0.08                | 0.07                       |
| 05-Dec | 0.05                | 0.06                       | 0.08                | 0.08                       |
| 06-Dec | 0.07                | 0.06                       | 0.07                | 0.08                       |
| 07-Dec | 0.16                | 0.11                       | 0.32                | 0.20                       |
| 08-Dec | 0.07                | 0.12                       | 0.19                | 0.26                       |
| 09-Dec | 0.06                | 0.07                       | 0.59                | 0.39                       |
| 10-Dec | 0.05                | 0.05                       | 0.09                | 0.34                       |
| 11-Dec | 0.05                | 0.05                       | 0.08                | 0.08                       |
| 12-Dec | 0.05                | 0.05                       | 0.07                | 0.08                       |
| 13-Dec | 0.10                | 0.07                       | 0.10                | 0.09                       |
| 14-Dec | 0.31                | 0.20                       | 0.80                | 0.45                       |
| 15-Dec | 0.08                | 0.19                       | 0.20                | 0.50                       |
| 16-Dec | 0.05                | 0.07                       | 0.10                | 0.15                       |
| 17-Dec | 0.10                | 0.08                       | 0.12                | 0.11                       |
| 18-Dec | 0.20                | 0.15                       | 0.98                | 0.55                       |
| 19-Dec | 0.09                | 0.14                       | 0.30                | 0.64                       |
| 20-Dec | 0.08                | 0.08                       | 0.30                | 0.30                       |
| 21-Dec | 0.09                | 0.08                       | 0.33                | 0.32                       |
| 22-Dec | 0.10                | 0.09                       | 0.26                | 0.29                       |
| 23-Dec | 0.10                | 0.10                       | 0.23                | 0.25                       |
| 24-Dec | 0.07                | 0.09                       | 0.15                | 0.19                       |
| 25-Dec | 0.08                | 0.08                       | 0.14                | 0.15                       |
| 26-Dec | 0.11                | 0.09                       | 0.25                | 0.20                       |
| 27-Dec | 0.06                | 0.08                       | 0.14                | 0.19                       |
| 28-Dec | 0.07                | 0.07                       | 0.12                | 0.13                       |
| 29-Dec | 0.05                | 0.06                       | 0.10                | 0.11                       |
| 30-Dec | 0.05                | 0.05                       | 0.10                | 0.10                       |
| 31-Dec | 0.05                | 0.05                       | 0.10                | 0.10                       |

## **APPENDIX 10: CERTIFICATIONS**





